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We have learned harmonic oscillators, coupled harmonic oscillators, and Bosonic fields, which
are emerged as the contiuum limit (N → ∞) of the N coupled harmonics oscillators. With these
ingredients we venture into the environmental problem of quantum mechanics. In particular we
study an LCR circuit as an example. We learn how the enegy dissipation of LC circuit (the system)
due to the resistor R (the environment) can be understood quantum mechanically by treating R
as a semi-infinite 1D transmission line with characteristic impedance of Zp = R. The model that
the dissipative elements are treated as a collection of conservative (reactive) elements is called
the Caldeira-Leggett model. The environment which is characterized by the frequency-independent
impedance Zp is called Ohmic environment.

I. LCR CIRCUIT - A CLASSICAL VIEW

Let us start by discussing the LCR circuit classically. The circuit equation is given by the Langevin-type equation:

L0Q̈(t) +RQ̇(t) +
1

C0
Q(t) = V(t)︸︷︷︸

Noise voltage

. (1)

The Fourier transform:

Q(t) =

∫ ∞
−∞

dΩ

2π
Q(Ω)e−iΩt (2)

Q(Ω) =

∫ ∞
−∞

dtQ(Ω)eiΩt (3)

gives

−Ω2L0Q(Ω)− iRΩQ(Ω) +
1

C0
Q(Ω) = V(Ω). (4)

Putting Ω0 =
√

1
L0C0

we have the following algebraic equation:

V(Ω) =
[
L0

(
Ω0 − Ω2

)
− iΩR

]
Q(Ω)

= χv(Ω)Q(Ω). (5)

Here the susceptibility χv(Ω) is intoduced. χv(Ω) can be split into in-phase and quadarure parts, that is, χv(Ω) =
χ′v(Ω) + iχ′′v(Ω) with

χ′v(Ω) = L0

(
Ω2

0 − Ω2
)

(6)

χ′′v(Ω) = −ΩR. (7)

We can thus think that the noise voltage V(t) at the resistor is induced as the response of the motion of the charge
Q(t).
From Eq. (5) we get the spectral density of the charge S̄QQ(Ω) as

S̄QQ(Ω) = Q∗(Ω)Q(Ω) =

∣∣∣∣ 1

χv(Ω)

∣∣∣∣2 V∗(Ω)V(Ω)
=

∣∣∣∣ 1

χv(Ω)

∣∣∣∣2 S̄V V (Ω), (8)
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where S̄V V (Ω) is the spectral density of the voltage. Here S̄QQ(Ω) and S̄V V (Ω) are the single-sided spectral densities,
which only assumes positive frequency (Ω ≥ 0). The variance of ⟨Q(t)2⟩ is obtained by integrating Eq. (8). To see
how this connection arises let us invoke the Wiener-Khinchin therom:

⟨Q(τ)Q(0)⟩ =

∫ ∞
0

dΩ

2π
S̄QQ(Ω) cosΩτ (9)

S̄QQ(Ω) =

∫ ∞
−∞

dτ⟨Q(τ)Q(0)⟩ cosΩτ, (10)

Plugging τ = 0 in Eq. (10) gives us the variance of Q(t), that is,

⟨Q(t)2⟩ =︸︷︷︸
Stationarity

⟨Q(0)2⟩ =

∫ ∞
0

dΩ

2π
S̄QQ(Ω)

=

∫ ∞
0

dΩ

2π

∣∣∣∣ 1

χv(Ω)

∣∣∣∣2 S̄V V (Ω)

=

∫ ∞
0

dΩ

2π

1

L2
0

 1

(Ω2
0 − Ω2)

2
+
(

R
L0

)2
Ω2

 S̄V V (Ω) (11)

When we are interested in the system in the thermal equilibrium the variance ⟨Q(t)2⟩ can be obtained from the
thermodynamical reasoning. Invoking the equipartition therem we have

1

2

⟨Q(t)2⟩
C0

=
1

2
kBT. (12)

Now suppose that the spectral density of voltage is white, that is, S̄V V (Ω) = S̄V V . By performing the integration in
Eq. (11) we have

⟨Q(t)2⟩ =
S̄V V

L2
0

∫ ∞
0

dΩ

2π

 1

(Ω2
0 − Ω2)

2
+
(

R
L0

)2
Ω2


=

1

4L0Ω2
0R

S̄V V . (13)

By comparing Eqs. (12) and (13) we arrived at the well-known Nyquist formula:

S̄V V = 4RkBT, (14)

which shows the connection between the Ohmic dissipation R, the voltage fluctuation S̄V V , and the temperature.
This can be recast into the following form

R =
1

2kBT
SV V (Ω), (15)

where we use the double-sided spectral density SV V (Ω), which assumes potive and negative frequency. The single-sided
spectral density S̄V V (Ω) can then be obtained in terms of them as

S̄V V (Ω) = SV V (Ω) + SV V (−Ω). (16)

In classical setting we have SV V (Ω) = SV V (−Ω), which can be derived from the fact that ⟨V (t)V (0)⟩ = ⟨V (0)V (t)⟩,
that is, V (t) and V (0) commute.

II. QUANTIZING THE ENVIRONMENT [1, 2]

A. Hamiltonian formalism

Let us reexamine the LCR circuit from the viewpoint of Hamiltonian formalism hoping that we will gain more
general tools to tackle open quantum systems. Here a difficulity is coming from the resistor R (the environment) in



3

the circuit, since for an harmonic oscillator the cannonical quantization is usually performed under the tacit assumption
that the system is conservative. The basic idea to treat non-conservative LCR circuit quantum mechanically is to
treat the dissipative element R as a semi-infinite 1D transmission line with characteristic impedance of Zp = R (i.e.,
the conservative element). Figure 1 depicts a series LCR circuit (a), which can be modeled as a series LC circuit
capacitively coupled to a semi-infinite 1D transmission line (b).

FIG. 1: (a) A series LCR circuit. (b) A series LC circuit capacitively coupled to a semi-infinite 1D transmission line.

Let us see how the semi-infinite 1D transmission line produce the voltage noise at the junction to the series LC
circuit. After taking the first and second continuum limits the Hamiltonian of a 1D transmission line can be expressed
as

H0 =

∫ ∞
−∞

dk

2π
h̄ωk

(
ĉ†(k)ĉ(k) +

1

2

)
, (17)

where

ĉ(k) =

√
cωk

2h̄

(
φ(−k) +

i

cωk
q(k)

)
(18)

ĉ†(k) =

√
cωk

2h̄

(
φ(k)− i

cωk
q(−k)

)
, (19)

are the annihilation and creation operators in the node representation with the commutation relation

[ĉ(k), ĉ†(k)] = 2πδ(k − k′). (20)

Here the flux operator φ(k) and the charge operator q(k) are given by

φ(k) = =

∫ ∞
−∞

dxφ(x)eikx (21)

q(k) =

∫ ∞
−∞

dxq(x)e−ikx, (22)

respectively with the commutation relation:

[φ(k), q(k′)] = ih̄ 2πδ(k − k′). (23)

The Heisenberg equations of motion for ĉ(k) and ĉ†(k) are

˙̂c(k, t) =
i

h̄
[H0, ĉ(k, t)] = −iωk ĉ(k, t) (24)

˙̂c†(k, t) =
i

h̄

[
H0, ĉ

†(k, t)
]
= iωk ĉ

†(k, t) (25)
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thus we have the plane wave solutions:

ĉ(k, t) = ĉ(k, 0)e−iωkt (26)

ĉ†(k, t) = ĉ†(k, 0)eiωkt. (27)

With these results the charge variable q(x, t) is given by

q(x, t) =

∫ ∞
−∞

dk

2π
q(k, t)eikx

=

∫ ∞
−∞

dk

2π
i

√
h̄ωkc

2

(
ĉ†(−k, t)− ĉ(k, t)

)
eikx

= −i

∫ ∞
−∞

dk

2π

√
h̄ωkc

2

(
ĉ(k, 0)ei(kx−ωkt) − h.c.

)
, (28)

which is indeed manifestly real as it has to be. The voltage V(x,t), which is also a real quantity, can be written in
terms of q(x, t) as

V (x, t) =
q(x, t)

c
= −i

∫ ∞
−∞

dk

2π

√
h̄ωk

2c

(
ĉ(k, 0)ei(kx−ωkt) − h.c.

)
. (29)

We now identify the modes with positive k as the right-moving modes and those with negative k as the left-moving
modes. The right-moving voltage V→(x, t) can thus be given by

V→(x, t) = −i

∫ ∞
0

dk

2π

√
h̄ωk

2c

(
ĉ(k, 0)ei(kx−ωkt) − h.c.

)
= −i

∫ ∞
0

vpdk

2π

√
h̄ωk

2cvp

(
ĉ(k, 0)
√
vp

ei(kx−ωkt) − h.c.

)

= −i

∫ ∞
0

dω

2π

√
h̄ωZp

2

(
ĉ(ω)ei(kx−ωt) − h.c.

)
, (30)

where vp = 1√
lc

is the velocity and Zp =
√

l
c is the impedance of the 1D transmission line. The left-moving voltage

can similarly given by

V←(x, t) = −i

∫ 0

−∞

dω

2π

√
h̄ωZp

2

(
ĉ(ω)ei(kx−ωt) − h.c.

)
, (31)

where ĉ(ω) = ĉ(k,0)√
vp

, which satisfies the commutation relation:

[ĉ(ω), ĉ†(ω′)] = [
ĉ(k)
√
vp

,
ĉ†(k′)
√
vp

] =
2π

vp
δ(k − k′) = 2πδ(ω − ω′). (32)

While the average voltage fluctuation ⟨V (x, t)⟩t is zero under the thermal equilibrium the variance is not, which is
basically the Johnson-Nyquist noise. By evaluating the variance, or rather the spectral density SV V (ω), we shall find
the quantum version of the Nyquist formula. Let us consider the auto-correlation of the voltage at the open terminal

at x = 0 of a semi-infinite transmission line with the characteristic impedance Zp =
√

l
c , which can be given by

⟨V (0, t+ τ)V (0, t)⟩t = ⟨(V→(0, t+ τ) + V←(0, t+ τ)) (V→(0, t) + V←(0, t))⟩t
= 4⟨V→(0, t+ τ)V→(0, t)⟩t, (33)

where the stationarity leads to the first equation, and V (x, t) = V→(x, t)+V←(x, t) and V→(x, t) = V←(x, t) for the
open terminal lead to the second and third equation, respectively.
For the situation in which the stationarity condition is satisfied the spectral density is obtained via the Wiener-

Khinchin theorem:

SV V (Ω) =

∫ ∞
−∞

dτ⟨V (0, t+ τ)V (0, t)⟩teiΩτ

= 4

∫ ∞
−∞

dτ⟨V→(0, t+ τ)V→(0, t)⟩teiΩτ = 4S→V V (Ω). (34)
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With Eq. (30) we have

S→V V (Ω) =

∫ ∞
−∞

dτ⟨V→(0, t+ τ)V→(0, t)⟩eiΩτ

= −
∫ ∞
−∞

dτ

∫ ∞
0

dω′

2π

∫ ∞
0

dω′

2π

h̄Zp

2

√
ωω′

⟨ĉ(ω)c(ω′)e−i(ω+ω′)t⟩︸ ︷︷ ︸
0

−⟨ĉ(ω)c†(ω′)e−i(ω−ω
′)t⟩︸ ︷︷ ︸

(n(ω)+1)2πδ(ω−ω′)

 ei(Ω−ω)τ

+

−⟨ĉ†(ω)c(ω′)e−i(−ω+ω′)t⟩︸ ︷︷ ︸
n(ω)2πδ(ω−ω′)

+ ⟨ĉ†(ω)c†(ω′)e−i(−ω−ω
′)t⟩︸ ︷︷ ︸

0

 ei(Ω+ω)τ

=

∫ ∞
−∞

dτ

∫ ∞
0

dω

2π

h̄ωZp

2

(
(n(ω) + 1) ei(Ω−ω)τ + n(ω)ei(Ω+ω)τ

)
=

∫ ∞
0

dω
h̄ωZp

2
((n(ω) + 1) δ(Ω− ω) + n(ω)δ(Ω + ω))

=
h̄|Ω|Zp

2
((n(Ω) + 1)Θ(Ω) + n(|Ω|)Θ(−Ω)) , (35)

where Θ(x) is the step function. Thus we have the voltage noise spectrum:

SV V (Ω) = 4S→V V (Ω) = 2h̄|Ω|Zp ((n(Ω) + 1)Θ(Ω) + n(|Ω|)Θ(−Ω)) . (36)

B. Anatomy of the Johnson-Nyquist noise

Let us now take a step back and see what is going on here. For the real-valued classical variable V (τ) its auto-
correlation functionGV V (τ) = ⟨V (τ)V (0)⟩ is also real. The commutativity of classical variable also suggestsGV V (τ) =
GV V (−τ), that is, the auto-correlation is symmetric in time. This leads to the symmetric-in-frequency power spectrum:

SV V (−Ω) =

∫ ∞
−∞

dτGV V (τ)e
−iΩτ

=

∫ −∞
∞

(−dτ)GV V (−τ)︸ ︷︷ ︸
GV V (τ)

eiΩτ = SV V (Ω). (37)

For the real-valued quantum variable V (τ), however, its auto-correlation function GV V (τ) is not necessarily real! Let
us see this in the following simple argument with a LC circuit. The real-valued flux variable is given by

φ(t) =

√
h̄

2C0ω

(
ĉ(t) + ĉ†(t)

)
=

√
h̄Z0

2

(
ĉe−iω0t + ĉ†eiω0t

)
, (38)

which is manifestly hermitian. The auto-correlation function is, however, not hermitian:

Gφφ(τ) =
h̄Z0

2

(
⟨ĉĉ†⟩e−iω0t + ⟨ĉ†ĉ⟩eiω0t

)
=

h̄Z0

2

(
(n(ω0) + 1)e−iω0t + n(ω0)e

iω0t
)
. (39)

Thus we arrive the asymmetric-in-frequency power spectrum of the flux variable:

Sφφ(Ω) =

∫ ∞
−∞

dτGφφ(τ)e
iΩτ =

h̄Z0

2
((n(ω0) + 1)2πδ(Ω− ω0) + n(ω0)2πδ(Ω + ω0)) . (40)

Since V (t) = φ̇(t) by the similar argument we have the asymmetric-in-frequency power spectrum:

SV V (Ω) =
h̄ω2

0Z0

2
((n(ω0) + 1)2πδ(Ω− ω0) + n(ω0)2πδ(Ω + ω0)) , (41)
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FIG. 2: Spectral density of quantum Johnson-Nyquist noise across a impedance matched to the characteristic impedance of
the 1D transmission line, Zp. The blue dashed line shows the zero-temperature quantum noise while the red line shows the one
at finite temperature.

which is the discrete version of the spectral density in Eq. (35). Here we note that the dimensions of the prefactor in
Eq. (35) and that in Eq. (41) coming from the dimension difference between Θ(Ω) and δ(Ω), i.e., [1] and [ 1Ω ]. We see
that the non-commutativity of the quantum operators φ(t) and V (t) with those in different time and the emergent
quantum fluctuation (i.e., one extra photon in the positive frequency) is the culprit of the asymmetric-in-frequency
power spectrum power spectrum. We also see that the result we have in Eq. (36) can be obtained by adding the
contribution of infinitely many LC circuits with different frequencies.

C. Quantum dissipation-fluctuation theorem

The expression Eq. (36) can recast into more compact form:

SV V (Ω) = 2Zp

(
h̄Ω

(
1

e
h̄Ω
kBT − 1

+ 1

)
Θ(Ω)− h̄Ω

(
1

e
− h̄Ω

kBT − 1

)
Θ(−Ω)

)

= 2Zp

(
h̄Ω

(
1

1− e
− h̄Ω

kBT

)
Θ(Ω) + h̄Ω

(
1

1− e
− h̄Ω

kBT

)
Θ(−Ω)

)

=

(
2Zph̄Ω

1− e
− h̄Ω

kBT

)
. (42)

This is called a double-sided spectral density where the frequency Ω runs from negative to positive as shown in Fig. 2.
Although the asymmetry of the spectral density in frequency is noticeable, it is not so trivial to see the asymmetry in
practice. The reason is that the range of frequencies where the asymmetry is significant is Ω > kBT

h̄ , that is very high
for the room temperature and GHz range even in a few mK environment. It is also required to distinguish between
the positive and negative frequencies in order to see the asymmetry. Nevertheless there have been several experiments
in which the quantum noise are revealed [3–8].
The single-sided spectral density, which can be measured with standard spectrum analyzers, is, on the other hand,
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given by symmetrizing the spectral density with respect to frequency:

S̄V V (Ω) = SV V (Ω) + SV V (−Ω) =

(
2Zph̄Ω

1− e
− h̄Ω

kBT

)
+

(
−2Zph̄Ω

1− e
h̄Ω
kBT

)

= 2Zph̄Ωcoth(
h̄Ω

2kBT
) (43)

= 4Zph̄Ω


1

e
h̄Ω
kBT − 1︸ ︷︷ ︸
n(h̄Ω)

+
1

2

 , (44)

where the frequency Ω runs only in the positive direction. In the last line we can recognize the contribution of the
zero point fluctuation, 2Zph̄Ω, to the noise spectral density explicitly. Equation (44) is called quantum dissipation-
fluctuation theorem, which connects the apparently unrelated two quantities; the transport coefficient Zp and the
noise spectral density S̄V V (Ω).
By taking the classical limit kBT ≫ h̄Ω the spectral density Eq. (44) becomes

S̄V V (Ω) = 4ZpkBT, (45)

which is the well-known Johnson-Nyquist formula, where the spectrum is proportional to the impedance Zp and
temperature T
The impedance Zp is, on the other hand, related to the difference of the noise spectral densities SV V (Ω) and

SV V (−Ω);

SV V (Ω)− SV V (−Ω) = 2Zp

(
h̄Ω

1− e
− h̄Ω

kBT

− −h̄Ω

1− e
h̄Ω
kBT

)
= 2Zph̄Ω, (46)

that is,

Zp =
1

2h̄Ω
(SV V (Ω)− SV V (−Ω)) . (47)

D. Ohmic environment

We are thus able to treat a dissipative element characterized by the impedance Zp quantum mechanically. The
quantum noise spectrum Eq. (42) shows peculiar quantum effect which manifest itself as the asymmetric-in-frequency
power spectrum in the quantum regime kBT ≤ h̄Ω. That the dissipative elements can be treated as a collection of
conservative (reactive) elements is essentially the way in which the Caldeira-Leggett model deals with resisters quantum
mechanically [1, 2]. The environment which is characterized by the frequency-independent impedance Zp and has the
noise power spectrum Eq. (42) is called Ohmic environment. Here note that the quantum noise spectral density for
the Ohmic environment Eq. (42) is propotional to Ω and is obtained within the assumption that the enviromment
can be modeled as a (1+1)-dimensional Bosonic field. When the environment is modeled as 2D, 3D, or fractional
dimension, the density of state ρ(Ω) becomes frequency − dependent ( for the Ohmic envionment ρ(Ω) = 1). Such
environments exhibit either faster (spacial dimension > 1) or slower (spacial dimension <1) development of noise
power spectrum with respect to the frequency Ω than the Ohmic environment (spacial dimension =1). Those are
called super-Ohmic and sub-Ohmic environments, respectively.

III. RELATION TO THE LINEAR-RESPONSE THEORY [2, 9, 10]

This kind of transport coefficient can in general be obtained by the linear-response theory. Let us check the above
result can be reproduced from the linear-response theory. Suppose that the Hamiltonian H0 in Eq. (17) describes the
unperturbed Hamiltonian for a 1D transmission line, which is now connected at x = 0 to an LC circuit capacitively
with the intercation Hamiltonian

Hi = Q̂s(t)V̂ , (48)
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where the canonical variables of the LC circuit are the charge Q̂s(t) and the flux Φ̂s(t) and V̂ = V̂ (x = 0) is
Schrödinger’s operator for the voltage at x = 0 (see Eq. (29)). In the interaction picture the time evolution of the
dentiy operator for the 1D transmission line ρI(t) is given by

∂

∂t
ρI(t) = − i

h̄
[HI(t), ρI(t)] , (49)

where

HI(t) = ei
H0
h̄ tHie

−iH0
h̄ t = Q̂s(t)

(
ei

H0
h̄ tV̂ e−i

H0
h̄ t
)
= Q̂s(t)V̂I(t) (50)

and

ρI(t) = ei
H0
h̄ tρ(t)e−i

H0
h̄ t (51)

with ρ(t) denoting the Schrödinger’s dentiy operator.
Assuming that the 1D transmission line is the initially unperturbed and in the thermal equilibrium state ρeq =

ρ(−∞) = ρI(−∞). Then the formal solution of Eq. (49) can be obtained perturbatively as

ρI(t) = ρeq −
i

h̄

∫ t

−∞
dt′ [HI(t

′), ρI(t
′)]

= ρeq −
i

h̄

∫ t

−∞
dt′

[
HI(t

′),

(
ρeq −

i

h̄

∫ t′

−∞
dt′′ [HI(t

′′), ρI(t
′′)]

)]

∼ ρeq −
i

h̄

∫ t

−∞
dt′ [HI(t

′), ρeq]

= ρeq −
i

h̄

∫ ∞
−∞

dt′θ(t− t′) [HI(t
′), ρeq]

= ρeq −
i

h̄

∫ ∞
−∞

dt′Q̂s(t
′)θ(t− t′)

[
V̂I(t

′), ρeq

]
, (52)

where θ(t− t′) is the step function:

θ(t− t′) =

{
1, if t− t′ ≥ 0

0, if t− t′ < 0,
(53)

used for extending the domain of integration to the infinity. Returning to the Schrödinger’s density operator gives

ρ(t) = ρeq −
i

h̄

∫ ∞
−∞

dt′Q̂s(t
′)θ(t− t′)

[
ei

H0
h̄ (t′−t)V̂ e−i

H0
h̄ (t′−t), ρeq

]
= ρeq −

i

h̄

∫ ∞
−∞

dt′Q̂s(t
′)θ(t− t′)

[
V̂I(t

′ − t), ρeq

]
(54)

The expectation value of V̂ is then written as

⟨V (t)⟩ = Tr
[
ρ(t)V̂s

]
= Tr

[
ρeqV̂s

]
︸ ︷︷ ︸

0

− i

h̄

∫ ∞
−∞

dt′Q̂s(t
′)θ(t− t′)Tr

[[
V̂I(t

′ − t), ρeq

]
V̂s

]

= − i

h̄

∫ ∞
−∞

dt′Q̂s(t
′)θ(t− t′)Tr

[(
V̂sV̂I(t

′ − t)− V̂I(t
′ − t)V̂s

)
ρeq

]
=

∫ ∞
−∞

dt′Q̂s(t
′)

(
− i

h̄
θ(t− t′)Tr

[(
V̂sV̂I(t

′ − t)− V̂I(t
′ − t)V̂s

)
ρeq

])
︸ ︷︷ ︸

χv(t−t′)

=

∫ ∞
−∞

dt′Q̂s(t
′)χv(t− t′), (55)
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where we define the time-domain response function χv(τ) as

χv(τ) = − i

h̄
θ(τ)Tr

[(
V̂sV̂I(−τ)− V̂I(−τ)V̂s

)
ρeq

]
= − i

h̄
θ(τ)Tr

[(
V̂se

i
H0
h̄ (−τ)V̂se

−iH0
h̄ (−τ) − ei

H0
h̄ (−τ)V̂se

−iH0
h̄ (−τ)V̂s

)
ρeq

]
= − i

h̄
θ(τ)Tr

[(
V̂se
−iH0

h̄ τ V̂se
i
H0
h̄ τ − e−i

H0
h̄ τ V̂se

i
H0
h̄ τ V̂s

)
ρeq

]
= − i

h̄
θ(τ)Tr

[(
V̂se
−iH0

h̄ τ V̂sρeqe
i
H0
h̄ τ − e−i

H0
h̄ τρeqV̂se

i
H0
h̄ τ V̂s

)]
= − i

h̄
θ(τ)Tr


ei

H0
h̄ τ V̂se

−iH0
h̄ τ︸ ︷︷ ︸

V̂ (τ)

V̂s︸︷︷︸
V̂ (0)

ρeq − ρeq V̂s︸︷︷︸
V̂ (0)

ei
H0
h̄ τ V̂se

−iH0
h̄ τ︸ ︷︷ ︸

V̂ (τ)




= − i

h̄
θ(τ)

(
⟨V̂ (τ)V̂ (0)⟩ − ⟨V̂ (0)V̂ (τ)⟩

)
. (56)

The Fourier transform of Eq. (56) gives the susceptibility χv(Ω):

χv(Ω) = χ′v(Ω) + iχ′′v(Ω)

= − i

h̄

∫ ∞
−∞

dτθ(τ)
(
⟨V̂ (τ)V̂ (0)⟩ − ⟨V̂ (0)V̂ (τ)⟩

)
eiΩτ

= − i

h̄

∫ ∞
0

dτ
(
⟨V̂ (τ)V̂ (0)⟩ − ⟨V̂ (0)V̂ (τ)⟩

)
eiΩτ . (57)

The imaginary part χ′′v(Ω) can then read

χ′′v(Ω) = − 1

h̄
Re

[∫ ∞
0

dτ
(
⟨V̂ (τ)V̂ (0)⟩ − ⟨V̂ (0)V̂ (τ)⟩

)
eiΩτ

]
= − 1

2h̄

[(∫ ∞
0

dτ
(
⟨V̂ (τ)V̂ (0)⟩ − ⟨V̂ (0)V̂ (τ)⟩

)
eiΩτ

)
+

(∫ ∞
0

dτ
(
⟨V̂ (τ)V̂ (0)⟩ − ⟨V̂ (0)V̂ (τ)⟩

)
eiΩτ

)∗]
= − 1

2h̄

[(∫ ∞
0

dτ
(
⟨V̂ (τ)V̂ (0)⟩ − ⟨V̂ (0)V̂ (τ)⟩

)
eiΩτ

)
+

(∫ ∞
0

dτ
(
⟨V̂ (0)V̂ (τ)⟩ − ⟨V̂ (τ)V̂ (0)⟩

)
e−iΩτ

)]
= − 1

2h̄

[(∫ ∞
0

dτ
(
⟨V̂ (τ)V̂ (0)⟩ − ⟨V̂ (0)V̂ (τ)⟩

)
eiΩτ

)
−
(∫ 0

−∞
dτ
(
⟨V̂ (0)V̂ (−τ)⟩ − ⟨V̂ (−τ)V̂ (0)⟩

)
eiΩτ

)]
= − 1

2h̄

[(∫ ∞
0

dτ
(
⟨V̂ (τ)V̂ (0)⟩ − ⟨V̂ (0)V̂ (τ)⟩

)
eiΩτ

)
−
(∫ 0

−∞
dτ
(
⟨V̂ (τ)V̂ (0)⟩ − ⟨V̂ (0)V̂ (τ)⟩

)
eiΩτ

)]
= − 1

2h̄

(∫ ∞
−∞

dτ⟨V̂ (τ)V̂ (0)⟩eiΩτ −
∫ ∞
−∞

dτ⟨V̂ (0)V̂ (τ)⟩eiΩτ

)
= − 1

2h̄
(SV V (Ω)− SV V (−Ω)) . (58)

According to Eq. (7), the impedance Zp can be given by

Zp = −χ′′v(Ω)

Ω
=

1

2h̄Ω
(SV V (Ω)− SV V (−Ω)) , (59)

which agrees with Eq. (47).
Here we assume the environment is in the thermal equilibrium and invoke the detailed balance condition:

SV V (Ω) = e
h̄Ω
kBT SV V (−Ω). (60)

Plugging this into Eq. (47) or (59), the impedance becomes

Zp =
1

2h̄Ω

(
1− e

− h̄Ω
kBT

)
SV V (Ω). (61)
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In the classical limit (T ≫ h̄Ω
kB

) we have

Zp ∼ 1

2kBT
SV V (Ω), (62)

and reproduce the classical result obtained in Eq. (15).

IV. PROBLEM

Let us consider the situation in which a system (parallel LC circuit) and an environment (semi-infinit 1D transmis-
sion line) are inductively coupled (see Fig. 3) as opposed to the situation we have investigated, where the those are
capacitively coupled (see Fig. 1). The interaction Hamiltonian for the inductive coupling is given by

Hj = Φ̂s(t)Î(t), (63)

where Î(t) = Î(x = 0, t) is Schödinger’s operator for the current at x = 0, which can be wrtitten as

Î(t) =
1

Zp
(V→(0, t)− V←(0, t))

= σp (V
→(0, t)− V←(0, t)) , (64)

with

σp =
1

Zp
(65)

being the characteristic conductance of the 1D transmission line. The interaction Hamiltonian, Eq. (63), for the
inductively coupled system can be compared to the one, Eq. (48), for the capcitively coupled system. Here V→(x, t)
and V←(x, t) are defined in Eqs. (30) and (31), respectively. Let us here assume that V←(0, t) = −V→(0, t) as for
the closed terminal at x = 0.

A. Current noise spectral density, SII(Ω) [1, 2]

Using the similar argument developed in Sec. II, prove that the current noise spectral density can be given by

SII(Ω) =

∫ ∞
−∞

dτ⟨I(τ)I(0)⟩eiΩτ

=

(
2σph̄Ω

1− e
− h̄Ω

kBT

)
. (66)

B. Kubo formula [1, 2]

Using the linear response theory developed in Sec. III with the interaction Hamiltonian Hj in Eq. (63), derive the
expression for the conductance σp in terms of SII(Ω) (Kubo formula):

σp =
1

2h̄Ω
(SII(Ω)− SII(−Ω)) . (67)

Confirm that plugging Eq. (66) into Eq. (67) produces an trivial equation.
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FIG. 3: (a) A parallel LCR circuit. (b) A parallel LC circuit inductively coupled to a semi-infinite 1D transmission line.
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