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From the viewpoints of Schrödinger and Heisenberg, we have studied a hormonic oscillator cou-
pled to an Ohmic environment. We shall now venture into the third viewpoint based on the path
integral, invented by R. F. Feynman, to look at the quantum dissipative system. Here we shall learn
the Feynman path integral method for treating simple cases, namely, a free particle and a particle
in a well, i.e., a simple harmonic oscillator. This serves as a preparation for treating the macro-
scopic quantum tunneling, i.e., a particle-like macroscopic degree of freedom undergoing quantum
tunnelings, by the Feynman path integral method.

I. BASICS OF PATH INTEGRAL

A. Basic idea [1]

It is said [1] that Feyman’s path integral method is inspired by the mysterious remark in Dirac’s book (page 128) [2],
which states that

exp

[
i

h̄

∫ tf

ti

dtL(q, q̇)

]
cooresponds to ⟨qf , tf |qi, ti⟩, (1)

where L(q, q̇) is the classical Lagrangian of a partical of mass m in a 1-dimensional potential V (q),

L(q, q̇) =
1

2
mq̇2 − V (q), (2)

and ⟨qf , tf |qi, ti⟩ is the quantum probability amplitude for the particle to go from a space-time point (qi, ti) to (qf , tf ).
The exact correspondance, in the end Feynman found, can indeed be written by the space-time integral

⟨qf , tf |qi, ti⟩ =

∫ qf

qi

Dq exp

[
i

h̄

∫ tf

ti

dtL(q, q̇)

]
=

∫ qf

qi

Dq exp

[
i

h̄
S[q]

]
, (3)

where ∫ qf

qi

Dq = lim
N→∞

( m

2πih̄∆t

)N
2

∫ ∞

−∞
dqN−1

∫ ∞

−∞
dqN−2 · · ·

∫ ∞

−∞
dq1. (4)

is a infinite-dimensional path integral with {qf , qN−1, qN−2, · · · , q1, qi} representing a single path (trajectory) of the
particle in a coordinate space and S[q] is the action. Let us see how this Feynman path integral, Eq. (3), is emerged.

B. Integral over paths through phase space [3]

The quantum probability amplitude for the particle ⟨qf , tf |qi, ti⟩ in Eq. (3) was written in the Heisenberg picture.
This can be rewritten in the Schrödinger picture as

⟨qf , tf |qi, ti⟩ = ⟨qf | exp
[
− i

h̄
H(tf − ti)

]
|qi⟩, (5)
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where

H =
1

2m
p2 + V (q) (6)

is the Hamiltonian with p being the momentum conjugate of q. Chopping the time interval t ≡ tf − ti into N ≫ 1
steps lead to

e−
i
h̄Ht =

[
e−

i
h̄H∆t

]N
, (7)

where ∆t = t
N . Now supposing that ∆t is very short time interval (compared to the dominant time scale of the

Hamiltonian dynamics) so that we can factorize e−
i
h̄H∆t in Eq. (7) into an easily diagonalized form, that is,

e−
i
h̄H∆t ∼=

(
1− i

H

h̄
∆t

)
+O(∆t2)

=

(
1− i

h̄

p2

2m
∆t

)(
1− i

h̄
V (q)∆t

)
+O(∆t2)

∼= e−
i
h̄

p2

2m∆te−
i
h̄V (q)∆t +O(∆t2). (8)

We thus have

⟨qf , tf |qi, ti⟩ = ⟨qf | e−
i
h̄

p2

2m∆te−
i
h̄V (q)∆t︸ ︷︷ ︸

1

e−
i
h̄

p2

2m∆te−
i
h̄V (q)∆t︸ ︷︷ ︸

2

· · · e− i
h̄

p2

2m∆te−
i
h̄V (q)∆t︸ ︷︷ ︸

N

|qi⟩. (9)

Here we introduce the resolution of identity,

1 =

∫
dqk|qk⟩⟨qk|

∫
dpk|pk⟩⟨pk|, (10)

and insert N of them into Eq. (9) leading to

⟨qf , tf |qi, ti⟩ = ⟨qf |
∫

dqN |qN ⟩⟨qN |
∫

dpN |pN ⟩⟨pN | e− i
h̄

p2

2m∆te−
i
h̄V (q)∆t︸ ︷︷ ︸

1

∫
dqN−1|qN−1⟩⟨qN−1|∫

dpN−1|pN−1⟩⟨pN−1| e−
i
h̄

p2

2m∆te−
i
h̄V (q)∆t︸ ︷︷ ︸

2

∫
dqN−2|qN−2⟩⟨qN−2|

· · ·
∫

dp1|p1⟩⟨p1| e−
i
h̄

p2

2m∆te−
i
h̄V (q)∆t︸ ︷︷ ︸

N

|qi⟩. (11)

We can simplifies Eq. (11) as

⟨qf , tf |qi, ti⟩ =
∫ N−1∏

k=1

dqk

∫ N∏
k=1

dpk ⟨qf |pN ⟩e− i
h̄

p2N
2m∆te−

i
h̄V (qN−1)∆t⟨pN |qN−1⟩

⟨qN−1|pN−1⟩e−
i
h̄

p2N−1
2m ∆te−

i
h̄V (qN−2)∆t⟨pN−1|qN−2⟩

· · · ⟨q1|p1⟩e−
i
h̄

p21
2m∆te−

i
h̄V (qi)∆t⟨p1|qi⟩. (12)

Remembering that within the position representation

⟨q|p⟩ = 1√
2πh̄

ei
qp
h̄ , (13)

Eq. (12) can be further simplified and given as a (2N-1)-dimensional integral

⟨qf , tf |qi, ti⟩ =

∫ N−1∏
k=1

dqk

∫ N∏
k=1

dpk
2πh̄

e
− i

h̄

(
p2N
2m+V (qN−1)−pN

qf−qN−1
∆t

)
∆t

e
− i

h̄

(
p2N−1
2m +V (qN−2)−pN−1

qN−1−qN−2
∆t

)
∆t

· · · e
− i

h̄

(
p21
2m−V (qi)+p1

q1−qi
∆t

)
∆t

=

∫ N−1∏
k=1

dqk

∫ N∏
k=1

dpk
2πh̄

exp

[
− i

h̄
∆t

N−1∑
k=0

(
p2k+1

2m
+ V (qk)− pk+1

qk+1 − qk
∆t

)]
, (14)
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where we set q0 = qi.
Now by taking the continuum limit, that is, N → ∞ while keeping t = N∆t constant, we have

⟨qf , tf |qi, ti⟩ =

∫ N−1∏
k=1

dqk︸ ︷︷ ︸∫
Dq

∫ N∏
k=1

dpk
2πh̄︸ ︷︷ ︸∫

Dp

exp

[
− i

h̄

∫ t

0

dt′
(
p(t′)2

2m
+ V (q(t′))− p(t′)q̇(t′)

)]

=

∫
Dq

∫
Dp exp

[
i

h̄

∫ t

0

dt′ (p(t′)q̇(t′)−H(q(t′), p(t′)))

]
, (15)

where we used

∆t
N−1∑
k=0

⇒
∫ t

0

dt′ (16)

qk+1 − qk
∆t

⇒ q̇(t′)|t′=k∆t, (17)

with ⇒ indicating the continuum limit. Equation (15) is the Hamiltonian formulation of the path integral.

C. Integral over paths through coordinate space [3]

The Hamiltonian formulation of the path integral, Eq. (15) represents Feynman’s idea that the quantum probability
amplitude ⟨qf , tf |qi, ti⟩ can be obtained by summing over all possible paths in the phase space. There is an analogous
formula based on Lagrangian and the philosophy is to get ⟨qf , tf |qi, ti⟩ by summing over all possible paths in the
configuration space. To this end, we just need to carry out the integration over Dp in Eq. (15). This can be done by
the following procedure. First, rewrite the path integral as

⟨qf , tf |qi, ti⟩ =
∫

Dq exp

[
− i

h̄

∫ t

0

dt′V (q)

] ∫
Dp exp

[
− i

h̄

∫ t

0

dt′
(

p2

2m
− pq̇

)]
, (18)

and recognize that the second integrand is quadratic in p. Second, to execute the integration over p with Gaussian
integration (see Appendix) go back to the finite-dimensional integral form,∫

Dp exp

[
− i

h̄

∫ t

0

dt′
(

p2

2m
− pq̇

)]
⇒

∫ N∏
k=1

dpk
2πh̄

exp

[
− i

h̄
∆t

N∑
k=1

(
p2k
2m

− pkq̇k

)]

=

(
1

2πh̄

)N ∫
dp exp

[
−1

2

(
pTAp

)
+ jTp

]
, (19)
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where

p =


p1
p2
p3
...
pN

 ; (20)

A =



i

mh̄
∆t 0 0 · · · 0

0
i

mh̄
∆t 0 · · · 0

0 0
i

mh̄
∆t

...
...

. . .

0 0
i

mh̄
∆t


; (21)

j =



i

h̄
q̇1∆t

i

h̄
q̇2∆t

i

h̄
q̇3∆t

...
i

h̄
˙qN∆t


. (22)

Third, perform the Gaussian integration (see Eq. (A4)):(
1

2πh̄

)N ∫
dp exp

[
−1

2

(
pTAp

)
+ jTp

]
=
( m

2πih̄∆t

)N
2

exp

[
− i

h̄
∆t

N∑
k=1

(
−1

2
mq̇k

2

)]
. (23)

Finally, by taking the continuum limit again we can complete the integration over Dp as∫
Dp exp

[
− i

h̄

∫ t

0

dt′
(

p2

2m
− pq̇

)]
= lim

N→∞

( m

2πih̄∆t

)N
2

exp

[
− i

h̄

∫ t

0

dt′
(
−1

2
mq̇k

2

)]
. (24)

By plugging Eq. (24) into Eq. (18) we rearch the same conclusion as Feynman, i.e., Eq. (3)!

D. Example: free particle

Having get the beautiful formula Eq. (3), this formula per se is little use. Consider the the simplest example, free
particle with mass m. In this case the Hamiltonian is

H =
p2

2m
. (25)

We shall now see that even in this simplest case the calculation of Gfree(qf , qi; t) ≡ ⟨qf , tf |qi, ti⟩ with the Feynman
path integral method is rather clumsy and cumbersome. We shall see the true power of the Feynman path integral
method later on.
To avoid the divergence problem inherent in the path integral in the continuum limit [3], the starting point to get

the formula of Gfree(qf , qi; t) is again the discretized finite-dimensional integral, Eq (14):∫ N−1∏
k=1

dqk

∫ N∏
k=1

dpk
2πh̄

exp

[
i

h̄

N∑
k=1

(
pk (qk − qk−1)−

p2k
2m

∆t

)]
. (26)
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Here we notice that the integrations over {q1, q2, · · · , qN−1} are separately perfermed and∫
dqk exp

[
i

h̄
qk (pk − pk+1)

]
= 2πh̄δpkpk+1

. (27)

Thus Eq. (26) becomes

(2πh̄)
N−1

∫ N∏
k=1

dpk
2πh̄

δpkpk+1
exp

 i

h̄

(pNqN − p1q0)︸ ︷︷ ︸
leftover

+
N∑

k=1

(
− p2k
2m

∆t

) . (28)

Performing the integration over pN we have

(2πh̄)
N−2

∫ N−1∏
k=1

dpk
2πh̄

δpkpk+1
exp

[
i

h̄

(
(pN−1qN − p1q0) +

N−1∑
k=1

(
− p2k
2m

∆t

)
−

p2N−1

2m
∆t

)]
. (29)

Then performing the integration over pN−1 we have

(2πh̄)
N−3

∫ N−2∏
k=1

dpk
2πh̄

δpkpk+1
exp

[
i

h̄

(
(pN−2qN − p1q0) +

N−2∑
k=1

(
− p2k
2m

∆t

)
−

p2N−2

2m
2∆t

)]
. (30)

Iteration of this integration over pk up to k = 2 leads to

Gfree(qf , qi; t) = lim
N→∞

∫
dp1
2πh̄

exp

[
i

h̄

(
(p1qN − p1q0) +

(
− p21
2m

∆t

)
− p21

2m
(N − 1)∆t

)]
= lim

N→∞

∫
dp1
2πh̄

exp

[
i

h̄

(
(qN − q0) p1 −

t

2m
p21

)]
=

∫
dp1
2πh̄

exp

[
i

h̄

(
(qf − qi) p1 −

t

2m
p21

)]
, (31)

where q0 = qi and qN = qf . This is the Gaussian-form integral with respect to p1. Performing the Gaussian integration
over p1 (see Eq. (A2)) we have

Gfree(qf , qi; t) =

√
1

4π
(

ih̄
2m

)
t
exp

[
− (qf − qi)

2

4
(

ih̄
2m

)
t

]
Θ(t), (32)

where the step function, Θ(t), is introduced to account for the causality. Note that this is like a solution of a classical
diffusion equation with the diffusion constant D = ih̄

2m .

II. STATIONARY PHASE APPROXIMATION TO THE PATH INTEGRAL [3]

The true power of the Feynman path integral method can be seen when the semi-classical limits of quantum theories
are dealt with. This includes the situation where a macroscopic objest is rest at a classical equilibrium position and
the quantum fluctuations around it are asked.
To see how the solutions of classical equations of motion appear in the path integral, let us explore the stationary

phase (saddle-point) approximation to the path integral. The first step is to find the solutions of the classical equation

of motion associated with the Lagrangian L(q, q̇), that is, the Euler-Lagrange equation, d
dt

(
∂L(q,q̇)

∂q̇

)
− ∂L(q,q̇)

∂q = 0,

that is, for L(q, q̇) in Eq. (2)

mq̈ +
∂V (q)

∂q
= 0. (33)

As the second step, let qcl be a only solution of Eq. (33) and set q = qcl + r. The action S[q] ≡
∫ t

0
dt′L(q, q̇) in
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Eq. (3) can then be Taylor-expanded as

S[q] =

∫ t

0

dt′L(q, q̇)

= S[qcl] +

∫ t

0

dt′
δS[qcl]

δq(t′)︸ ︷︷ ︸
0

r(t′) +
1

2

∫ t

0

dt′
∫ t

0

dt′′r(t′)
δ2S[qcl]

δq(t′)δq(t′′)
r(t′′) + · · ·

≃ S[qcl] +
1

2

∫ t

0

dt′
∫ t

0

dt′′r(t′)
δ2S[qcl]

δq(t′)δq(t′′)
r(t′′), (34)

where δS[qcl]
δq(t′) = 0 is ensured by the classical solution qcl. Here δS[qcl]

δq(t′) and δ2S[qcl]
δq(t′)δq(t′′) are the functional derivatives.

The meaning of the functional derivatives can be made clear by (again) going back to the discrete N-dimensional
version of Eq. (34)

S[q] = ∆t
N∑

k=1

L(qk, q̇k)

= ∆t

N∑
k=1

L(q
(cl)
k , q̇k

(cl)) + ∆t

N∑
l=1

∂
(
∆t
∑

k L(q
(cl)
k , q̇k

(cl))
)

∂ql
rl +

1

2
∆t

N∑
l=1

∆t

N∑
m=1

∂2
(
∆t
∑

k L(q
(cl)
k , q̇k

(cl))
)

∂ql∂qm
rlrm

= S[q(cl)] + ∆t

N∑
l=1

∂S[q(cl)]

∂ql
rl +

1

2
∆t

N∑
l=1

∆t

N∑
m=1

∂2S[q(cl)]

∂ql∂qm
rlrm (35)

and by taking the continuum limit

∆t
N∑
l=1

∂S[q(cl)]

∂ql
rl ⇒

∫ t

0

dt′
δS(q(t′))

δq(t′)
r(t′) (36)

1

2
∆t

N∑
l=1

∆t
N∑

m=1

∂2S[q(cl)]

∂ql∂qm
rlrm ⇒ 1

2

∫ t

0

dt′
∫ t

0

dt′′r(t′)
δ2S[qcl]

δq(t′)δq(t′′)
r(t′′). (37)

Finally, by plugging Eq. (34) into Eq. (3) we have the stationary phase (saddle-point) approximation to the path
integral:

⟨qf , tf |qi, ti⟩ =

∫ qf

qi

Dq exp

[
i

h̄
S[q]

]
= exp

[
i

h̄
S[qcl]

]
︸ ︷︷ ︸
classical path

∫ qf

qi

Dr exp

[
1

2

∫ t

0

dt′
∫ t

0

dt′′r(t′)
δ2S[qcl]

δq(t′)δq(t′′)
r(t′′)

]
︸ ︷︷ ︸

quantum fluctuation

. (38)

The form Eq. (38) appears to be very appealing: the classical path associated with the classical action S[qcl] are
embellished with the quantum fluctuation. Note that the quantum fluctuation is now completely described by c-
numbers as opposed to quantum operators.
To make further progress let us see more explicit from with L(q, q̇) in Eq. (2). By expanding the action S[qcl] in
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r(t) explicitly we have

S[q] =

∫ ∞

0

dt′
(
1

2
mq̇2 − V (q)

)
≃
∫ t

0

dt′
[
1

2
m
(
˙qcl
2 + 2 ˙qclṙ + ṙ2

)
−
(
V (qcl) +

∂V (qcl)

∂q
r +

1

2

∂2V (qcl)

∂q2
r2
)]

=

∫ t

0

dt′
[
1

2
m ˙qcl

2 − V (qcl)

]
+

∫ t

0

dt′
[
m ˙qclṙ −

∂V (qcl)

∂q
r

]
+

∫ t

0

[
1

2
mṙ2 − 1

2

∂2V (qcl)

∂q2
r2
]

= S[qcl]−
∫ t

0

dt′
[
mq̈cl +

∂V (qcl)

∂q

]
︸ ︷︷ ︸

0

r(t′)− 1

2

∫ t

0

dt′r(t′)

[
m

d2

dt′2
+

∂2V (qcl)

∂q2

]
r(t′)

= S[qcl]−
1

2

∫ t

0

dt′r(t′)

[
m

d2

dt′2
+

∂2V (qcl)

∂q2

]
r(t′), (39)

where, in the third line, we performed the integrations by part,∫ t

0

dt′m ˙qclṙ = [m ˙qclr]
t
0︸ ︷︷ ︸

0

−
∫ t

0

dt′mq̈clr (40)

∫ t

0

dt′mṙ2 = [mṙr]
t
0︸ ︷︷ ︸

0

−
∫ t

0

dt′mr̈r. (41)

By compared with Eq. (34) we obtain the following relation:

1

2

∫ t

0

dt′
∫ t

0

dt′′r(t′)
δ2S[qcl]

δq(t′)δq(t′′)
r(t′′) = −1

2

∫ t

0

dt′r(t′)

[
m

d2

dt′2
+

∂2V (qcl)

∂q2

]
r(t′). (42)

A. Example: quantum harmonic oscillator

Let us apply the above argument to a particle in a harmonic potential V = 1
2kq

2, that is, a harmonic oscillator.
The classical equation of motion is mq̈ + kq = 0. Imposing the boundary conditions q(0) = q(t) = 0, the solution of
the classical motion is obiously qcl = 0. We thus have

GHO(0, 0; t) ≡ ⟨qf = 0, t|qi = 0, 0⟩ =

∫
Dq exp

[
i

h̄
S[q]

]
≃ exp

[
i

h̄
S[qcl]

]
︸ ︷︷ ︸

1

∫
Dr exp

[
− i

h̄

∫ t

0

dt′r(t′)

[
1

2

(
m

d2

dt′2
+

∂2V (qcl)

∂q2

)]
r(t′)

]

=

∫
Dr exp

[
− i

h̄

∫ t

0

dt′r(t′)
m

2

(
d2

dt′2
+ ω2

)
r(t′)

]
, (43)

where ω =
√

k
m is the eigenfrequency of the oscillator. This integral is again Gaussian form, so we can perform the

Gaussian integration. To perform the integral let us tentatively assume the differential operator −m
2

(
d2

dt′2 + ω2
)
be

a finite-dimensional matrix A. The integral then becomes familiar one as Eq. (A3) and get

GHO(0, 0; t) = N 1√
det [A]

, (44)

with N absorbed several constants, which may be divergent after taking the continuum limit, though. Then the
question is; what is det [A]? The answer can be found by expressing A in terms of eigenvalues, that is,

Avn ≡ −m

2

(
d2

dt′2
+ ω2

)
vn

= ϵnvn. (45)
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The eigestates vn are given by

vn = sin

(
nπt′

t

)
(46)

with the eigenvalues

ϵn =
m

2

(
−ω2 +

(nπ
t

)2)
(47)

for n = 1, 2, · · ·∞. Thus the determinant of A is thus given by

det [A] =
∞∏

n=1

ϵn =
∞∏

n=1

m

2

(
−ω2 +

(nπ
t

)2)
. (48)

We then notice that 1√
det[A]

is obtained from the infinite product of
(
−ω2 +

(
nπ
t

)2)− 1
2

, each of which is divergent

for nπ
t = ω, a very alarming situation!

To circumvent the calculation of the dangerous determinant explicitly, we can exploit the well-behaved result
obtained for a free particle in Sec. ID. Indeed, Gfree(0, 0; t) is the special case of GHO(0, 0; t) for V (q) = 0, that is,
ω = 0. Let us evaluate the following quantity,

GHO(0, 0; t) =

(
GHO(0, 0; t)

Gfree(0, 0; t)

)
Gfree(0, 0; t). (49)

The quantity inside the parentheses in Eq. (49) gives

GHO(0, 0; t)

Gfree(0, 0; t)
=

N
∏∞

n=1

[
m
2

(
−ω2 +

(
nπ
t

)2)]− 1
2

N
∏∞

n=1

[
m
2

(
nπ
t

)2]− 1
2

=
∞∏

n=1

[
1−

(
ωt

nπ

)2
]− 1

2

=

√
ωt

sin(ωt)
. (50)

Thus, with Eq.(49), GHO(0, 0; t) bocomes

GHO(0, 0; t) =

√
ωt

sin(ωt)
Gfree(0, 0; t) =

√
mω

2πih̄ sin(ωt)
Θ(t), (51)

where we used Eq. (32) for Gfree(0, 0; t).

III. PROBLEM

A. Example: free particle in momentum representation

Consider again the path integral of a free particle with mass m with H = p2

2m . This time, however, we are interested
in a form in the momentum representation, that is,

⟨p′, t|p, 0⟩ =
∫

dq

∫
dq′⟨q′, t|q, 0⟩ exp

[
− i

h̄
(pq + p′q′)

]
. (52)

Show that

⟨p′, t|p, 0⟩ = 2πh̄δ(p′ − p) exp

[
− i

h̄

(
p2

2m

)
t

]
. (53)
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Appendix A: Gaussian integration

First, some mathematics. The most fundamental Gaussian integration is∫ ∞

−∞
dxe−

1
2ax

2

=

√
2π

a
. (A1)

An interesting and useful Gaussian integration is∫ ∞

−∞
dxe−

1
2ax

2+bx =

√
2π

a
e

b2

2a . (A2)

The Multi-dimensional expansion of Eq. (A1) is∫ ∞

−∞
dve−

1
2v

TAv = (2π)
N
2

1√
det [A]

, (A3)

and that of Eq. (A2) is ∫ ∞

−∞
dve−

1
2v

TAv+j·v = (2π)
N
2

1√
det [A]

e
1
2j

TA−1j , (A4)
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