
Instantons and quantum tunneling

Koji Usami∗

(Dated: January 20, 2017)

We shall now learn how the Feynman path integral can be used to deal with a particle in an double-
well potential with two minima. The particle in such a potential undergoes quantum tunnelings.
To handle these tunnelings we introduce the instantons along with the Euclidean path integral. The
instantons are playing important roles in modern physics and mathematics. The instanton living in
a double-well potential we shall consider is the simplest among these.

I. INSTANTONS [1–4]

Let us now try to apply the Feynman path integral method to the situation in which a particle of mass m is placed
in a 1-dimensional anharmonic potential with two minima at q = ±a, that is, a double-well potential. Suppose that
initially at t = 0 the particle is placed in the minimum q = a. There is a trivial stationary path, that is, q(t) = a. To
be more specific, suppose that the double-well potential is symmetric and is written as

V (q) =
k

8a2
(
q2 − a2

)
(1)

as shown in Fig. 1. Around the minima q = ±a can both be approximated as harmonic characterized by the

eigenfrequency ω =
√

k
m .
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FIG. 1: A double-well potential.

Then we may conclude the quantum probability amplitude ⟨q = a, t|q = a, 0⟩ for the particle is the same as the
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particle in a simple harmonic potential;

GHO(a, a; t) = ⟨q = a, t|q = a, 0⟩ = ⟨q = a| exp
[
− it

h̄
H

]
|q = a⟩

=

∫
Dq exp

[
i

h̄

∫ t

0

dt′
(m
2
q̇(t′)2 − V (q(t′))

)]
(2)

=

√
mω

2πih̄ sin(ωt)
Θ(t). (3)

This guess is in fact incorrect since we ignored the possible contributions to the path integral from the paths associated
with the quantum tunnelings between two mimima. Those paths associated with the quantum tunnelings are, however,
classically forbidden. How can we incorporate those paths?

A. Euclidean path integral

The new insight can be obtained by considering the path integral with imaginary time τ = it. Exchanging t with
τ = it (called the Wick rotation) enables us to deal with the Euclidean space spanned by τ and q as opposed to the
Minkowski space spanned by t and q. We then define Euclidean path integral as

GE(a, a; τ) = ⟨q = a, τ |q = a, 0⟩ = ⟨q = a| exp
[
− τ

h̄
H
]
|q = a⟩

=

∫
Dq exp

[
− 1

h̄

∫ τ

0

dτ ′
(m
2
q̇(τ ′)2 + V (q(τ ′))

)]
=

∫
Dq exp

[
− 1

h̄
S[q]

]
. (4)

The stationary phase (saddle-point) equation, that is, the Euler-Lagrange equation, with respect to the imaginary
time τ becomes

−mq̈(τ) +
∂V (q(τ))

∂q(τ)
= 0, (5)

and is corresponding to the one with respect to the real time t but with the inverted potential, −V (q). Then indeed
a path going from q = a to q = −a and then from there to q = a is allowed now. Moreover there are infinitely many
paths going from q = a to q = −a, going back and forth many times, and then returning to q = a are permitted.
Those classical paths can be thought of emerging because of the quantum tunnelings.

B. Instantons

The classical paths emerged after the Wick rotaion can be viewed as the results of the creations and annihilations
of a instanton. Let us consider the contribution of these instantons to the path integral. The first integral of the
equation of motion, Eq. (5), can be given by∫ τ

0

dτ ′ (−mq̈q̇) +

∫ τ

0

dτ ′
(
∂V (q)

∂q
q̇

)
= 0. (6)

Now suppose the boundary condition at τ = 0 as qcl(0) = −a and q̇cl(0) = 0. Then the first term on the left hand
side of Eq. (6) gives ∫ τ

0

dτ ′ (−mq̈q̇) =
[
−mq̇2

]τ
0︸ ︷︷ ︸

−mq̇(τ)2+mq̇(0)2=−mq̇(τ)2

−
∫ τ

0

dt′ (−mq̈q̇) (7)

and thus ∫ τ

0

dτ ′ (−mq̈q̇) = −m

2
q̇(τ)2. (8)
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The second term on the left hand side of Eq. (6) gives∫ τ

0

dτ ′
(
∂V (q)

∂q

dq

dτ ′

)
=

∫ q(τ)

−a

dq
dV (q)

dq
= V (q(τ))− V (−a)︸ ︷︷ ︸

0

= V (q(τ)). (9)

Thus we have, from Eq. (6),

m

2
˙qcl
2 = V (qcl). (10)

The instanton action can then be given by

Sin =

∫ τ

0

dτ ′

m

2
˙qcl
2 + V (qcl)︸ ︷︷ ︸

m
2 ˙qcl2

 =

∫ τ

0

dτ ′
dqcl
dτ ′

m ˙qcl =

∫ qcl(τ)

−a

dqcl
√
2mV (qcl). (11)

Note that this formula is the same form as the barrier-penetration formula obtained by the semiclassical Wentzel-
Kramers-Brillouin (WKB) method [2].
We then proceed to explore the temporal features of the instantons. The solution of Eq. (10) with the boundary

condition, qcl(τ) = a at τ → ∞, is obtained by introducing a parameter τ1 as

qcl(τ) = a tanh

(
ω (τ − τ1)

2

)
. (12)

The solution, Eq. (12), reflects the time-translation invariance of the first integral Eq. (10), that is, τ1 assumes any
positive value. This will indicate the existence of a zero mode around the saddle-point qcl. We will explain the
implication of the zero mode in Appendix A. Note that the temporal extension of the instanton is of the order of
ω−1 around the kink at τ1 as shown in Fig. 2. Here and hereafter the temporal extension of the instanton ω−1 is
considered to be short with respect to τ → ∞.
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FIG. 2: A single instanton. Here the solution Eq. (12) with ω = 1 and τ1 = 30 is shown.

1. Single instanton

Within the saddle-point approximation, the single instanton contribution to the path integral G(a,−a; τ) can be
obtained by integrating the paths with a single instanton (occurred at τ = τ1) over τ1

G(1)(a,−a; τ) =

∫ τ

0

dτ1A1,cl(τ1)×A1,q(τ1), (13)
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where A1,cl(τ1) and A1,q(τ1) are the classical and quantum contributions, respectively.
To proceed, let us consider the following 4 contributions separately. First, consider the contibution from the classical

part A1,cl(τ1) that stems from the non-kink region where the particle rests on qcl = ±a. This is in fact negligible as
in the case of a harmonic oscillator. The classical contribution from the instanton, that is, from the kink region, is
non-zero and given by

A1,q(τ1) = exp

[
−Sin

h̄

]
= exp

[
− 1

h̄

(∫ a

−a

dq
√
2mV (q)

)]
, (14)

which completely dictates the classical action. Note that this contribution is independent on τ1. Third contribution is
from the quatum fluctuation accompanying with the instanton at τ1, which appears within ∆τ ∼ ω−1. But this can
be considered to be negligible since ∆τ is too short for this to be significant as compared to the quantum contribution
from the non-kink region. The latter constitutes the forth contribution, which can be viewed as coming from the
Euclidean version of the action for a harmonic oscillator. From the Minkowski path integral given in Eq. (3), we can
infer the Euclidean version (for τ → ∞) as

Gq = ⟨q = 0, τ |q = 0, 0⟩

= ⟨q = a| exp
[
− τ

h̄
H
]
|q = 0⟩ =

∑
n

⟨q = 0|n⟩⟨n|q = 0⟩e−
Enτ
h̄

=

√
mω

2πih̄ sin (−iωτ)
=

√
mω

2πh̄ sinh (ωτ)

∼=
√

mω

πh̄
e−

ωτ
2 , (15)

Here we recognize that the lowest (ground-state, i.e., n = 0) energy contribution becomes dominant as τ → ∞ and
the grand-state wave function and the energy can be given by

|⟨q = 0|n = 0⟩|2 =

√
mω

πh̄
(16)

E0 =
h̄ω

2
, (17)

respectively. Summing up all the contributions with a single instanton, the Euclidean path integral Eq. (13) becomes

G(1)(a,−a; τ) =

√
mω

πh̄
e−

ωτ
2

(
Ke−

Sin
h̄

∫ τ

0

dτ1

)
, (18)

where K is a constant to make sense the single instanton contibution [2]. We will evaluate K in Appendix A.

2. Dilute instanton gas

There are paths with n (odd) instantons which contributes to G(a,−a; τ). Here we make the dilute instanton
gas approximation, where each interaction can be treated independently. We will comment on the validity of dilute
instanton gas approximation in Appendix B. We can then extend Eq. (18) to the one with n instantons as

G(n)(a,−a; τ) =

√
mω

πh̄
e−

ωτ
2

(
Kne−

nSin
h̄

∫ τ

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

dτn

)
, (19)

where the classical instanton contribution becomes e−
nSin

h̄ while the contribution from the quantum fluctuation is
the same as for the single instanton case within the dilute instanton gas approximation. By summing up all the
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contributions with n = 1, 3, · · · instantons, we have finally

G(a,−a; τ) =

√
mω

πh̄
e−

ωτ
2

∑
n:odd

Kne−
nSin

h̄

∫ τ

0

dτ1

∫ τ1

0

dτ2 · · ·
∫ τn−1

0

dτn︸ ︷︷ ︸
τn

n!

=

√
mω

πh̄
e−

ωτ
2

∑
n:odd

1

n!

(
τKe−

Sin
h̄

)n
(20)

=

√
mω

πh̄
e−

ωτ
2 sinh

(
τKe−

Sin
h̄

)
. (21)

II. REMARKS

A. 1-dimentional Ising magnets

The Euclidean path integral Eq. (4) can be viewed as the partition function by 1
h̄ ⇒ β = 1

kBT , τ ⇒ L, τ ′ ⇒ x, and

q(τ ′) ⇒ ϕ(x), that is,

Z = Tr
[
e−βH

]
=

∫
Dϕ exp


−β

∫ L

0

dx

 1

2

(
∂ϕ(x)

∂x

)2

︸ ︷︷ ︸
exchange interaction

+
r

2
ϕ(x)2 + gϕ(x)4︸ ︷︷ ︸

double−well potential

+ fϕ(x)︸ ︷︷ ︸
bias


︸ ︷︷ ︸

S[ϕ]


. (22)

This is indeed the celebrated Ginzburg-Landau model of the 1-dimensional Ising systems of length L [1]. The action
S[ϕ] is called ϕ4-action. We can use the instanton technique to deal with this model beyond the perturbative approach.
We can, for instance, show that there is no ferromagnetic phase in 1-dimensional Ising systems in the thermodynamic
limit by using the instanton technique [1].

B. Instantion and topology

The instanton we discussed is a kind of topological excitation in 1-dimensional space, called kink. By topological
we mean that e.g., the classical path with 1 instanton and the path with 3 instantons are not connected by smooth
deformation of the paths. So the paths with different instantons are topologically distinct. The higher dimensional
topological excitations are called vortices(2D), monopoles(3D), and instantons(4D) [4]. These are playing importnat
roles in modern physics and mathematics.

III. PROBLEM

A. Tunnel splitting

We shall now see that the above instanton method can predict the tunnel splitting of the enegy of the particle in
the double well potential. Let us again calculate G(a,−a; τ) for a particle in the double-well potential Eq. (1) under
the assumption that the particle has low energy and we only need to consider the lowest two levels, that is, symmetric
and anti-symmetric eigenstates, |S⟩ and |A⟩, respectively. Suppose that these states have a degenerate energy h̄ω

2 if
there were no tunneling, but, as a result of the tunneling, the energies are tunnel splitting to become

ϵS =
h̄ω

2
− ∆ϵ

2
(23)

ϵA =
h̄ω

2
+

∆ϵ

2
, (24)
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where ∆ϵ stand for the tunnel splitting. Try calculate

G(a,−a; τ) = ⟨a|
(
exp

[
− τ

h̄
H
])

(|S⟩⟨S|+ |A⟩⟨A|) |a⟩, (25)

with ⟨a|S⟩⟨S| − a⟩ = C
2 and ⟨a|A⟩⟨A| − a⟩|2 = −C

2 . Here C =
√

mω
πh̄ , the spread of the ground-state wave function

appeared in Eq. (16). Compare the result with Eq. (21) and show that the tunneling splitting can be expressed as

∆ϵ = 2h̄K exp

[
−Sin

h̄

]
. (26)

Appendix A: Evaluation of K [2]

The constant K appeared in Eq. (18) takes care of the subtlety of the zero mode accompanying the instanton when
executing the path integral. K can be evaluated in the following way. First, notice that within the saddle-point
approximation the path can be written as

q(τ) = qcl(τ) +
∑
n

rnxn(τ), (A1)

where qcl(τ) is the classical path and rn(τ)s are the quantum fluctuations around qcl(τ). Here xns are a complete set
of real orthonormal functions and vanish at the boundaries, that is,∫ τ

0

dτ ′xn(τ
′)xm(τ ′) = δnm, (A2)

xn(0) = xn(τ) = 0. (A3)

Then, the Euclidean path integral Eq. (18) can be rewitten as

Gq
∼= e−

Sin
h̄ N

∫ ∏
n

drn√
2πh̄

exp

[
− 1

h̄

∫ τ

0

dτ ′rn

(
−m

(
d

dτ ′

)2

+
∂2V (qcl)

∂q2

)
rn

]
, (A4)

where N is the normalization factor introduced for using the more convenient measure, which in the end does not
need to be evaluated [2]. When we perform the gaussian integration the tacit assumption is that the eigenvalues of

the differential operator −
(
m d

dτ

)2
+ ∂2V (qcl)

∂q2 is positive. However we saw that there is a zero mode with eigenvalue

0 (see Eq. (12)). To see more explicitly let us differentiate the saddle-point equation (5) once more to give(
−m

(
d

dτ

)2

+
∂2V (qcl)

∂q2

)
dqcl
dτ

= 0. (A5)

This suggests the second derivative appeared in the saddle-point approximation of the path integral Eq. (A4), that

is, −m
(

d
dτ

)2
+ ∂2V (qcl)

∂q2 has a zero mode, whose eigenfunction can be written as

x1(τ) =

√
m

Sin

dqcl(τ)

dτ
. (A6)

Here the normalization factor
√

m
Sin

comes from Eq. (A2), that is∫ τ

0

dτ ′x1(τ
′)x1(τ

′) =
1

Sin

∫ τ

0

m

(
dqcl(τ)

dτ

)2

︸ ︷︷ ︸
Sin

= 1, (A7)

where we used Eq. (11). We cannot then perferm the gaussian integration without encountering a disastrous infinity.
At this juncture let us remember that we have already performed the strange integration over τ1, the location of

the instanton, in Eqs. (13) and (18). There is a relation between x1 and τ1. On the one hand, the change of the path
q(τ) induced by a change in the location of the kink τ1 by dτ1 is

dq(τ) =
dqcl
dτ

dτ1. (A8)
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On the other hand, from Eq. (A1), we have

dq(τ) = x1dr1 =

√
m

Sin

dqcl
dτ︸ ︷︷ ︸

x1

dr1. (A9)

Thus, we had effectively traded the disastrous integration over r1 for the integration over τ1 by setting

1√
2πh̄

dr1 =

√
Sin

2πh̄m
dτ1. (A10)

With this identification of zero mode the path integral Eq. (A4) should have been written as

G(1)(a,−a; τ) = e−
Sin
h̄

√
Sin

2πh̄m

∫ τ

0

dτ1︸ ︷︷ ︸
zero mode

N
∫ ∞∏

n=2

drn√
2πh̄

exp

[
− 1

h̄

∫ τ

0

dτ ′rn

(
−m

(
d

dτ ′

)2

+
∂2V (qcl)

∂q2

)
rn

]

= e−
Sin
h̄

√
Sin

2πh̄m
τN 1√

det′
[
−m

(
d

dτ ′

)2
+ ∂2V (qcl)

∂q2

] , (A11)

where by det′ we mean the determinant does not contain the contibution from the zero mode. On the other hand,
the same formula with K, Eq. (18), can be rewritting as

G(1)(a,−a; τ) = e−
Sin
h̄ τ

(√
mω

πh̄
e−

ωτ
2

)
K

= e−
Sin
h̄ τ

N 1√
det
[
−m

(
d

dτ ′

)2
+mω2

]
K. (A12)

Comparing Eqs (A11) and (A12), we have

K =

√√√√√ Sin

2πh̄m

 det
[
−m

(
d

dτ ′

)2
+mω2

]
det′

[
−m

(
d

dτ ′

)2
+ ∂2V (qcl)

∂q2

]
. (A13)

Appendix B: Validity of the dilute instanton gas approximation [1, 2]

We have argued that the instatons are all widely separated. We can verify this by the following argument. The
strategy is to evaluate the typical number of instantons ⟨n⟩ and to show that the number is indeed small with respect
to the time τ → ∞.
First the probability of having n instanton can be given, from Eq. (20), by

Pn =

1
n!

(
τKe−

Sin
h̄

)n
∑

n:odd
1
n!

(
τKe−

Sin
h̄

)n . (B1)

Thus the typical number of instantons ⟨n⟩ can be evaluated as

⟨n⟩ =
∑
n:odd

nPn =

∑
n:odd

n
n!

(
τKe−

Sin
h̄

)n
∑

n:odd
1
n!

(
τKe−

Sin
h̄

)n = τKe−
Sin
h̄ . (B2)

Here we used for ⟨n⟩ ≫ 1 the even/odd distinction in the sum can be ignored. Then the density of the instatanton
can be given by

⟨n⟩
τ

= Ke−
Sin
h̄ . (B3)
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Since h̄ is small the density is exponentially small; the average separation between instantons are indeed enormous.
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