Quantum Langevin equation

Koji Usami*

(Dated: October 05, 2017)
From the viewpoint of Schrödinger, we have studied a hormonic oscillator coupled to an Ohmic environment and derive the resultant master equation for the damped harmonic oscillator. We shall now reexamine the damped harmonic oscillator from the viewpoint of Heisenberg and discuss the resultant quantum Heisenberg-Langevin equation.

I. CLASSICAL LANGEVIN EQUATION [1, 2]

Let us study the situation in which an LC circuit system (a harmonic oscillator) coupled to a transmission line bath (a boson field) characterized by the impedance Z_{p}. The Langevin equation for the LC circuit is obtained by the following argument. Remembering that the right-moving voltage and the right-moving current are related as

$$
\begin{align*}
\frac{\partial}{\partial x} V^{\rightarrow}(x, t) & =\frac{\partial}{\partial x} \dot{\varphi}^{\rightarrow}(x, t) \\
& =\frac{\partial}{\partial t} \underbrace{\frac{\partial}{\partial x} \varphi^{\rightarrow}(x, t)}_{-l I^{\rightarrow}(x, t)}=-l\left(\frac{\partial}{\partial t} I^{\rightarrow}(x, t)\right) \tag{1}
\end{align*}
$$

Thus we have the current from the following expression:

$$
\begin{equation*}
I^{\rightarrow}(x, t)=-\frac{1}{l} \int_{-\infty}^{t} d \tau\left(\frac{\partial}{\partial x} V^{\rightarrow}(x, \tau)\right) \tag{2}
\end{equation*}
$$

By plugging

$$
\begin{align*}
V^{\rightarrow}(x, t) & =-i \int_{0}^{\infty} \frac{d \omega}{2 \pi} \sqrt{\frac{\hbar \omega Z_{p}}{2}}\left(\hat{c}(\omega) e^{i(k x-\omega t)}-h . c .\right) \tag{3}\\
V^{\leftarrow}(x, t) & =-i \int_{0}^{\infty} \frac{d \omega}{2 \pi} \sqrt{\frac{\hbar \omega Z_{p}}{2}}\left(\hat{c}(\omega) e^{i(-k x-\omega t)}-h . c .\right) \tag{4}
\end{align*}
$$

into the constitutive equation (2), which is essentially the Newton's law for the transmission line, we have

$$
\begin{align*}
I^{\rightarrow}(x, t) & =\frac{V^{\rightarrow}(x, t)}{Z_{p}} \tag{5}\\
I^{\leftarrow}(x, t) & =-\frac{V^{\leftarrow}(x, t)}{Z_{p}} \tag{6}
\end{align*}
$$

Since the boundary between the transmission line bath and the LC circuit system at $x=0$ is open we have

$$
\begin{align*}
V(x=0, t) & =V^{\rightarrow}(x=0, t)+V^{\leftarrow}(x=0, t) \equiv V_{\text {out }}(t)+V_{\text {in }}(t) \tag{7}\\
I(x=0, t) & =I^{\rightarrow}(x=0, t)+I^{\leftarrow}(x=0, t) \\
& =\frac{1}{Z_{p}}\left(V^{\rightarrow}(x=0, t)-V^{\leftarrow}(x=0, t)\right) \equiv \frac{1}{Z_{p}}\left(V_{\text {out }}(t)-V_{\text {in }}(t)\right) . \tag{8}
\end{align*}
$$

This can be considered as the classical input-output relation. By eliminating $V_{\text {out }}(t)$ the voltage and the current relation at the boundary becomes

$$
\begin{equation*}
V(x=0, t)=Z_{p} I(x=0, t)+2 V_{i n}(t) \tag{9}
\end{equation*}
$$

[^0]Now let us consider the following LCR circuit equation, where the resistance stems from the coupling to the semiinfinite transmission line bath characterized by the impedance Z_{p}. By Kirchhoff 's law we have

$$
\begin{equation*}
\frac{Q(t)}{C_{0}}+L_{0} \dot{I}(x=0, t)+V(x=0, t)=0 . \tag{10}
\end{equation*}
$$

With the emf voltage $V(x=0, t)$ due to the semi-infinite transmission line bath, which is given by Eq. (9), the circuit equation becomes

$$
\begin{equation*}
\frac{Q(t)}{C_{0}}+Z_{p} I(x=0, t)+L_{0} \dot{I}(x=0, t)=-2 V_{i n}(t) \tag{11}
\end{equation*}
$$

which leads to the following white-noise-form Langevin equation:

$$
\begin{equation*}
\ddot{Q}(t)+\underbrace{\Gamma}_{\frac{z_{p}}{L_{0}}} \dot{Q}(t)+\underbrace{\omega_{0}}_{\frac{1}{L_{0} C_{0}}} Q(t)=-\frac{2 V_{i n}(t)}{L_{0}} \tag{12}
\end{equation*}
$$

where $V_{i n}(t)$ and $\dot{Q}(t)$ are the stochastic variables, called

$$
\begin{array}{rll}
V_{i n}(t) & : \text { Wiener (white noise) process } \\
\dot{Q}(t)=I(t) & : \text { Ornstein }- \text { Uhlenbeck process }
\end{array}
$$

respectively. Here the averaged values of $V_{i n}(t)$ exhibits strange traits [2]:

$$
\begin{align*}
\left\langle V_{i n}(t)\right\rangle & =0 \tag{13}\\
\left\langle V_{i n}(t) V_{i n}(0)\right\rangle & =\delta(t) S_{V V}^{\leftarrow}, \tag{14}
\end{align*}
$$

where the spectral density $\bar{S}_{V V}^{\leftarrow}(\omega)$ is given by

$$
\begin{equation*}
\bar{S}_{V V}^{\overleftarrow{ }}(\omega)=\frac{1}{4} \bar{S}_{V V}(\omega)=Z_{p} \hbar \omega\left(n(\omega)+\frac{1}{2}\right) \tag{15}
\end{equation*}
$$

The above Langevin equation, Eq. (12) is a typical example of the stochastic differential equation, for which the more careful mathematical manipulation is required than for the ordinary differential equation [2]. Nevertheless, we shall abuse the Fourier transform and get

$$
\begin{equation*}
Q(\omega)=\frac{1}{\left(\omega_{0}^{2}-\omega^{2}\right)-i \omega \Gamma}\left(-\frac{2 V_{i n}(\omega)}{L_{0}}\right) \tag{16}
\end{equation*}
$$

which nevertheless gives us the correct spectral density

$$
\begin{equation*}
S_{Q Q}(\omega)=\frac{1}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \Gamma^{2}}\left(\frac{4 \bar{S}_{V V}^{\overleftarrow{ }}(\omega)}{L_{0}^{2}}\right) \tag{17}
\end{equation*}
$$

From the virial theorem the capacitive energy $\left\langle\frac{Q^{2}}{2 C_{0}}\right\rangle$ and inductive energy $\left\langle\frac{\varphi^{2}}{2 L_{0}}\right\rangle$ share the same energy $\frac{E}{2}$. We thus have the following energy spectral density for the LCR circuit:

$$
\begin{align*}
S_{E}(\omega) & =2 \frac{S_{Q Q}(\omega)}{2 C_{0}}=\frac{1}{C_{0}} \frac{1}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\omega^{2} \Gamma^{2}}\left(\frac{4 Z_{p} \hbar \omega}{L_{0}^{2}}\left(n(\omega)+\frac{1}{2}\right)\right) \\
& \sim \frac{1}{4 \omega_{0}^{2}\left(\omega_{0}-\omega\right)^{2}+\omega_{0}^{2} \Gamma^{2}}\left(\frac{4 Z_{p} \hbar \omega}{C_{0} L_{0}^{2}}\left(n(\omega)+\frac{1}{2}\right)\right) \\
& =\frac{1}{\left(\omega_{0}-\omega\right)^{2}+\frac{\Gamma^{2}}{4}}\left(\frac{Z_{p} \hbar \omega}{\omega_{0}^{2} C_{0} L_{0}^{2}}\left(n(\omega)+\frac{1}{2}\right)\right) \\
& =\frac{1}{\left(\omega_{0}-\omega\right)^{2}+\frac{\Gamma^{2}}{4}}\left(\frac{Z_{p}}{L_{0}} \hbar \omega\left(n(\omega)+\frac{1}{2}\right)\right) \\
& =\frac{\Gamma}{\left(\omega_{0}-\omega\right)^{2}+\frac{\Gamma^{2}}{4}}\left(\hbar \omega\left(n(\omega)+\frac{1}{2}\right)\right) . \tag{18}
\end{align*}
$$

We shall be led to the same energy spectral density when we use the more general quantum Heisenberg-Langevin approach we shall now learn. For the explicit derivation, see Appendix B.

II. QUANTUM HEISENBERG-LANGEVIN EQUATION $[1,3]$

Let us reexamine the LCR circuit quantum mechanically with the Heisenberg picture. We shall assume the total Hamiltonian to be

$$
\begin{equation*}
H=H_{s}+H_{b}+H_{i}, \tag{19}
\end{equation*}
$$

where H_{s}, H_{b}, and H_{i} are the Hamiltonians of the LC circuit (the system), the transmission line (the Ohmic environment), which are respectively given by

$$
\begin{align*}
H_{s} & =\hbar \omega_{0} \hat{a}^{\dagger} \hat{a} \tag{20}\\
H_{b} & =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hbar \omega \hat{c}^{\dagger}(\omega) \hat{c}(\omega) \tag{21}\\
H_{i} & =-i \hbar \sqrt{\Gamma} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(\hat{a}^{\dagger} \hat{c}(\omega)-\hat{a} \hat{c}^{\dagger}(\omega)\right) \tag{22}
\end{align*}
$$

The Heisenberg equation of motion for the environment is

$$
\begin{equation*}
\dot{\hat{c}}(\omega, t)=\frac{i}{\hbar}[H, \hat{c}(\omega, t)]=-i \omega \hat{c}(\omega, t)+\sqrt{\Gamma} \hat{a}(t) . \tag{23}
\end{equation*}
$$

We can find the formal solution of Eq. (23) as

$$
\begin{equation*}
\hat{c}(\omega, t)=e^{-i \omega\left(t-t_{0}\right)} \hat{c}\left(\omega, t_{0}\right)+\sqrt{\Gamma} \int_{t_{0}}^{t} d \tau e^{-i \omega(t-\tau)} \hat{a}(\tau) \tag{24}
\end{equation*}
$$

The Heisenberg equation of motion for the system, on the other hand, is given by

$$
\begin{equation*}
\dot{\hat{a}}(t)=\frac{i}{\hbar}[H, \hat{a}(t)]=-i \omega_{0} \hat{a}(t)-\sqrt{\Gamma} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{c}(\omega, t) \tag{25}
\end{equation*}
$$

Now let us define the slowly-varing variable $\hat{\alpha}(t)$ as $\hat{a}(t)=\hat{\alpha}(t) e^{-i \omega_{0} t}$. Plugging this $\hat{\alpha}(t)$ in Eq. (25) we can eliminate the first term:

$$
\begin{equation*}
\dot{\hat{\alpha}}(t)=-\sqrt{\Gamma} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{c}(\omega, t) e^{i \omega_{0} t} \tag{26}
\end{equation*}
$$

By plugging the solution for $\hat{c}(\omega, t)$ in Eq. (24) into Eq. (26) we have

$$
\begin{align*}
& \dot{\hat{\alpha}}(t)=-\sqrt{\Gamma} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{i\left(\omega_{0}-\omega\right) t} e^{i \omega t_{0}} \hat{c}\left(\omega, t_{0}\right)-\Gamma \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \int_{t_{0}}^{t} d \tau e^{i\left(\omega_{0}-\omega\right)(t-\tau)} \hat{\alpha}(\tau) \\
& =-\sqrt{\Gamma} \underbrace{\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{i\left(\omega_{0}-\omega\right) t} \hat{c}\left(\omega, t_{0}\right) e^{i \omega t_{0}}}_{\hat{c}(t)}-\Gamma \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{\alpha}(t) \int_{0}^{t-t_{0}} d \tau^{\prime} e^{i\left(\omega_{0}-\omega\right) \tau^{\prime}} \\
& =-\sqrt{\Gamma} \hat{c}(t)-\Gamma \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{\alpha}(t) \int_{0}^{\infty} d \tau^{\prime} e^{i\left(\omega_{0}-\omega\right) \tau^{\prime}} \\
& =-\sqrt{\Gamma} \hat{c}(t)-i \Gamma \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{\alpha}(t)\left(-i \lim _{\epsilon \rightarrow 0^{+}} \int_{0}^{\infty} d \tau e^{i\left[\left(\omega_{0}-\omega\right)+i \epsilon\right] \tau}\right) \\
& =-\sqrt{\Gamma} \hat{c}(t)-i \Gamma \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{\alpha}(t) \underbrace{\left(\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{\left(\omega_{0}-\omega\right)+i \epsilon}\right)}_{\frac{\mathcal{P}}{\omega_{0}-\omega}-i \pi \delta\left(\omega_{0}-\omega\right)} \\
& =-\sqrt{\Gamma} \hat{c}(t)-i \underbrace{\mathcal{P} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \frac{\Gamma}{\omega_{0}-\omega}}_{\Delta} \hat{\alpha}(t)-\underbrace{\Gamma \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \pi \delta\left(\omega_{0}-\omega\right)}_{\frac{\Gamma}{2}} \hat{\alpha}(t) \\
& =-\sqrt{\Gamma} \hat{c}(t)-\left(i \Delta+\frac{\Gamma}{2}\right) \hat{\alpha}(t), \tag{27}
\end{align*}
$$

where we put $\tau^{\prime}=t-\tau$ and used the so-called Dirac identity [4]:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0^{+}} \frac{1}{\left(\omega_{0}-\omega\right)+i \epsilon}=\frac{\mathcal{P}}{\omega_{0}-\omega}-i \pi \delta\left(\omega_{0}-\omega\right) \tag{28}
\end{equation*}
$$

Note that 1) since the variation of the slowly-varing variable $\hat{\alpha}\left(t-\tau^{\prime}\right)$ is far slower than the the other and the contribution of $\hat{\alpha}(t)$ to the integral would dominate: thus $\hat{\alpha}(t)$ is put outside of the integration with respect to $\tau^{\prime}[3]$; 2) since $t_{0} \rightarrow-\infty$ the domain of integration of τ^{\prime} can be extended to ∞. We also defined the time-domain operator $\hat{c}(t)$ as

$$
\begin{equation*}
\hat{c}(t)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{c}\left(\omega, t_{0}\right) e^{i \omega t_{0}} e^{-i\left(\omega-\omega_{0}\right) t}=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hat{c}(\omega, 0) e^{-i\left(\omega-\omega_{0}\right) t} \tag{29}
\end{equation*}
$$

Equation (27) is called the quantum Heisenberg-Langevin equation. Here note that $\hat{\alpha}(t)$ and $\hat{c}(t)$ have different dimensions, that is, [1] and $\left[\frac{1}{\sqrt{\text { time }}}\right]$.

A. Relation to the master equation [3]

The average value of Eq. (27) gives

$$
\begin{equation*}
\frac{d}{d t}\langle\hat{\alpha}(t)\rangle=-\left(i \Delta+\frac{\Gamma}{2}\right)\langle\hat{\alpha}(t)\rangle \tag{30}
\end{equation*}
$$

since $\langle\hat{c}(t)\rangle=0$ and the first term in Eq. (27) disappears. This equation can be obtained from the master equation. To see this, note that

$$
\begin{equation*}
\frac{d}{d t}\langle\hat{a}(t)\rangle=\frac{d}{d t} \operatorname{Tr}\{\tilde{\sigma}(t) \hat{a}\}=\operatorname{Tr}\left\{\frac{d \tilde{\sigma}(t)}{d t} \hat{a}\right\} . \tag{31}
\end{equation*}
$$

Now the master equation reads

$$
\begin{align*}
\frac{\partial \tilde{\sigma}(t)}{\partial t}=-\frac{i}{\hbar}\left[\hbar \Delta \hat{a}^{\dagger} \hat{a}, \tilde{\sigma}(t)\right]+\frac{\Gamma^{\prime}+}{2} & \Gamma \\
& \left(2 \hat{a} \tilde{\sigma}(t) \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a} \tilde{\sigma}(t)-\sigma(t) \hat{a}^{\dagger} \hat{a}\right) \tag{32}\\
& +\frac{\Gamma^{\prime}}{2}\left(2 \hat{a}^{\dagger} \tilde{\sigma}(t) \hat{a}-\hat{a} \hat{a}^{\dagger} \tilde{\sigma}(t)-\tilde{\sigma}(t) \hat{a} \hat{a}^{\dagger}\right)
\end{align*}
$$

Using the invariance of the trace in a circular permutation and the commutator $\left[\hat{a}, \hat{a}^{\dagger}\right]=1$ we have indeed

$$
\begin{align*}
\frac{d}{d t}\langle\hat{a}(t)\rangle & =\left\langle\frac{d \tilde{\sigma}(t)}{d t} \hat{a}\right\rangle \\
& =-i \Delta\langle\hat{a} \tilde{\sigma}\rangle-\frac{\Gamma}{2}\langle\hat{\alpha} \tilde{\sigma}\rangle \\
& =-\left(i \Delta+\frac{\Gamma}{2}\right)\langle\hat{\alpha}(t)\rangle . \tag{33}
\end{align*}
$$

Note that the photon-number-dependent Γ^{\prime} is absent since the terms contain Γ^{\prime} are canceled out here. This exhibits the characteristics of harmonic oscillators with equi-spaced energy level struture. This also makes it clear that the Heisenberg's approach is more simpler and effective than Schrödinger's in analyzing damped harmonic oscillators.

III. THE INPUT-OUTPUT THEORY [1]

Let us study the quantum Langevin equation a bit further. Let the system-environment Hamiltonian again be

$$
\begin{equation*}
H=H_{s}+H_{b}+H_{i}, \tag{34}
\end{equation*}
$$

with

$$
\begin{align*}
H_{s} & =H_{s}\left(\hat{a}, \hat{a}^{\dagger}, \hat{b}(\omega), \hat{b}^{\dagger}(\omega), \cdots\right) \tag{35}\\
H_{b} & =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \hbar \omega \hat{c}^{\dagger}(\omega) \hat{c}(\omega) \tag{36}\\
H_{i} & =-i \hbar \sqrt{\Gamma} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi}\left(\hat{a}^{\dagger} \hat{c}(\omega)-\hat{a} \hat{c}^{\dagger}(\omega)\right), \tag{37}
\end{align*}
$$

where the system Hamiltonian now contains the other field operators $\hat{b}(\omega), \hat{b}^{\dagger}(\omega), \cdots$ suggesting the existence of other decay channels.

We are interested in the effect of the environment mode specified by the operators $\hat{c}(\omega)$ and $\hat{c}^{\dagger}(\omega)$ on the system which interacts not only the concerned bath mode but also the other environment modes. The equation of motion for the envionment mode is the same as before:

$$
\begin{equation*}
\dot{\hat{c}}(\omega, t)=-i \omega \hat{c}(\omega, t)+\sqrt{\Gamma} \hat{a}(t) \tag{38}
\end{equation*}
$$

while that for the system becomes

$$
\begin{equation*}
\dot{\hat{a}}(t)=\frac{i}{\hbar}\left[H_{s}, \hat{a}(t)\right]-\sqrt{\Gamma} \int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} c(\omega, t) . \tag{39}
\end{equation*}
$$

We can find two formal solutions for Eq. (38); one of which is the one we have already encountered and we shall call it the input mode,

$$
\begin{equation*}
\hat{c}_{i n}(\omega, t)=e^{-i \omega\left(t-t_{0}\right)} \hat{c}\left(\omega, t_{0}\right)+\sqrt{\Gamma} \int_{t_{0}}^{t} d \tau e^{-i \omega(t-\tau)} \hat{a}(\tau), \tag{40}
\end{equation*}
$$

which is defined by referring to the past time t_{0}, the other is the output mode,

$$
\begin{equation*}
\hat{c}_{o u t}(\omega, t)=e^{-i \omega\left(t-t_{1}\right)} \hat{c}\left(\omega, t_{1}\right)-\sqrt{\Gamma} \int_{t}^{t_{1}} d \tau e^{-i \omega(t-\tau)} \hat{a}(\tau) \tag{41}
\end{equation*}
$$

which is defined by referring to the future time t_{1}. Plugging those solutions in Eq. (39) we have two equations of motions for the system:

$$
\begin{align*}
& \dot{\hat{a}}(t)=\frac{i}{\hbar}\left[H_{s}+\Delta, \hat{a}(t)\right]-\frac{\Gamma}{2} \hat{a}(t)-\sqrt{\Gamma} \hat{c}_{\text {in }}(t) e^{-i \Omega t} \tag{42}\\
& \dot{\hat{a}}(t)=\frac{i}{\hbar}\left[H_{s}+\Delta, \hat{a}(t)\right]+\frac{\Gamma}{2} \hat{a}(t)-\sqrt{\Gamma} \hat{c}_{\text {out }}(t) e^{-i \Omega t} \tag{43}
\end{align*}
$$

where the time-domain operators $\hat{c}_{\text {in }}(t)$ and $\hat{c}_{\text {out }}(t)$ are defined by

$$
\begin{align*}
\hat{c}_{i n}(t) e^{-i \Omega t} & =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega\left(t-t_{0}\right)} \hat{c}\left(\omega, t_{0}\right) \tag{44}\\
\hat{c}_{\text {out }}(t) e^{-i \Omega t} & =\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} e^{-i \omega\left(t-t_{1}\right)} \hat{c}\left(\omega, t_{1}\right) \tag{45}
\end{align*}
$$

respectively. By subtracting Eq. (43) from Eq. (42) we have

$$
\begin{equation*}
0=-\Gamma \hat{a}(t)-\sqrt{\Gamma} \hat{c}_{\text {in }}(t) e^{-i \Omega t}+\sqrt{\Gamma} \hat{c}_{\text {out }}(t) e^{-i \Omega t} \tag{46}
\end{equation*}
$$

which leads to the very useful input-output relation [1]:

$$
\begin{equation*}
\hat{c}_{\text {out }}(t)=\hat{c}_{\text {in }}(t)+\sqrt{\Gamma} \hat{\alpha}(t) \tag{47}
\end{equation*}
$$

with $\hat{a}(t)=\hat{\alpha}(t) e^{-i \Omega t}$. It should be emphasized that the dimension of $\hat{\alpha}(t)$ and that of $\hat{c}_{\text {in }}(t)$ and $\hat{c}_{\text {out }}(t)$ are differnet. $\hat{\alpha}(t)$ is the annihilation operator of LC circuit, that is, $(0+1)$-dimensional Bosonic field, while $\hat{c}_{\text {in }}(t)$ and $\hat{c}_{\text {out }}(t)$ are the annihilation operators of 1D transmission line, that is, $(1+1)$-dimensional Bosonic field. At the boundary between the $(0+1)$-dimensional Bosonic field and the $(1+1)$-dimensional Bosonic field the special kind of care represented by Eq. (47) must be taken. The quantum Heisenberg-Langevin equation (27) and the input-output relation make up
a set of the most useful equations in treating macroscopic quantum phenomena, which is applicable to many open quantum systems where a ($0+1$)-dimensional system coupled to a continuum ($\mathrm{d}+1$)-dimensional environment, where " d " is the spatial dimension of the environment.

The input-output relation (47) can be compared with the more explicit classical input-output relation for the LC circuit with 1D transmission line:

$$
\begin{equation*}
V_{o u t}(t)=V_{\text {in }}(t)+Z_{p} I(t) \tag{48}
\end{equation*}
$$

which can be rewritten as

$$
\begin{equation*}
\frac{V_{o u t}(t)}{\sqrt{Z_{p}}}=\frac{V_{i n}(t)}{\sqrt{Z_{p}}}+\sqrt{Z_{p}} I(t) \tag{49}
\end{equation*}
$$

or more suggestive form with the flux variable $\varphi(t)=L_{0} I(t)$:

$$
\begin{equation*}
\underbrace{\frac{V_{\text {out }}(t)}{\sqrt{Z_{p}}}}_{\sim \sqrt{\hbar \Omega} \hat{c}_{\text {out }}(t) e^{-i \Omega t}}=\underbrace{\frac{V_{\text {in }}(t)}{\sqrt{Z_{p}}}}_{\sim \sqrt{\hbar \Omega} \hat{c}_{\text {in }}(t) e^{-i \Omega t}}+\underbrace{\sqrt{\frac{Z_{p}}{L_{0}}} \frac{\varphi(t)}{\sqrt{L_{0}}}}_{\sim \sqrt{\Gamma} \sqrt{\hbar \Omega} \hat{\alpha}(t) e^{-i \Omega t}}, \tag{50}
\end{equation*}
$$

and thus reproducing the input-output relation (47);

$$
\begin{equation*}
\hat{c}_{\text {out }}(t)=\hat{c}_{\text {in }}(t)+\sqrt{\Gamma} \hat{\alpha}(t) \tag{51}
\end{equation*}
$$

Here we used

$$
\begin{align*}
V_{\text {in }}(t) & =V^{\leftarrow}(x=0, t)=-i \int_{0}^{\infty} \frac{d \omega}{2 \pi} \sqrt{\frac{\hbar \omega Z_{p}}{2}}\left(\hat{c}(\omega) e^{-i \omega t}-h . c .\right) \sim-i \sqrt{\frac{\hbar \Omega Z_{p}}{2}}\left(\hat{c}_{i n}(t) e^{-i \Omega t}-h . c .\right) \tag{52}\\
V_{\text {out }}(t) & =V^{\rightarrow}(x=0, t)=-i \int_{-\infty}^{0} \frac{d \omega}{2 \pi} \sqrt{\frac{\hbar \omega Z_{p}}{2}}\left(\hat{c}(\omega) e^{-i \omega t}-h . c .\right) \sim-i \sqrt{\frac{\hbar \Omega Z_{p}}{2}}\left(\hat{c}_{\text {out }}(t) e^{-i \Omega t}-h . c .\right) \tag{53}\\
\varphi(t) & =-i \sqrt{\frac{\hbar L_{0} \Omega}{2}}\left(\hat{a}-\hat{a}^{\dagger}\right)=-i \sqrt{\frac{\hbar L_{0} \Omega}{2}}\left(\hat{\alpha} e^{-i \Omega t}-\hat{\alpha}^{\dagger} e^{i \Omega t}\right), \tag{54}
\end{align*}
$$

and chose the terms evolving as $e^{-i \Omega t}$.

Appendix A: Quantum regression theorem [3, 5]

With the Hermitian conjugate of Eq. (27)

$$
\begin{equation*}
\dot{\hat{\alpha}}^{\dagger}(t)=-\sqrt{\Gamma} \hat{c}(t)-\left(-i \Delta+\frac{\Gamma}{2}\right) \hat{\alpha}^{\dagger}(t) \tag{A1}
\end{equation*}
$$

we can show that

$$
\begin{equation*}
\left\langle\hat{c}^{\dagger}(t) \hat{\alpha}\left(t^{\prime}\right)\right\rangle=0 \tag{A2}
\end{equation*}
$$

by considering the relevent time scales. Then the two-time average $\left\langle\hat{\alpha}(t) \hat{\alpha}\left(t^{\prime}\right)\right\rangle$ obeys the equation of motion

$$
\begin{equation*}
\frac{d}{d t}\left\langle\hat{\alpha}^{\dagger}(t) \hat{\alpha}\left(t^{\prime}\right)\right\rangle=-\left(-i \Delta+\frac{\Gamma}{2}\right)\left\langle\hat{\alpha}^{\dagger}(t) \hat{\alpha}\left(t^{\prime}\right)\right\rangle \tag{A3}
\end{equation*}
$$

Equation (A3) is in the same form as the equation of motion for the one-time average $\left\langle\hat{a}^{\dagger}(t)\right\rangle$, that is,

$$
\begin{equation*}
\frac{d}{d t}\left\langle\hat{a}^{\dagger}(t)\right\rangle=-\left(-i \Delta+\frac{\Gamma}{2}\right)\left\langle\hat{a}^{\dagger}(t)\right\rangle \tag{A4}
\end{equation*}
$$

which is the Hermitian conjugate of Eq. (30). The fact that the time evolution of the two-time averages are obtained from the one-time averages is called the quantum regression theorem.

Appendix B: Relation between the classical Langevin equation and quantum Heisenberg-langevin equation

The steady state solution of Eq. (27) for $\hat{\alpha}(t)$ is

$$
\begin{equation*}
\hat{\alpha}(t)=\frac{-\sqrt{\Gamma}}{i \Delta+\frac{\Gamma}{2}} \hat{c}(t) \tag{B1}
\end{equation*}
$$

Thus we have the average photon number in the LC circuit:

$$
\begin{align*}
\left\langle\hat{\alpha}^{\dagger}(t) \hat{\alpha}\left(t^{\prime}\right)\right\rangle & =\frac{\kappa}{\Delta^{2}+\frac{\kappa^{2}}{4}}\left\langle\hat{c}^{\dagger}(t) \hat{c}\left(t^{\prime}\right)\right\rangle \\
& =\frac{\kappa}{\Delta^{2}+\frac{\kappa^{2}}{4}} n(\omega) \delta\left(t-t^{\prime}\right) \tag{B2}
\end{align*}
$$

Consequently, the spectral density at the angular frequency ω for the LC photon can be obtained by

$$
\begin{align*}
S_{n}(\omega) & =\int_{-\infty}^{\infty} d T\left\langle\hat{\alpha}^{\dagger}(T) \hat{\alpha}(0)\right\rangle e^{i \omega T} \\
& =\int_{-\infty}^{\infty} d T \frac{\Gamma}{\Delta^{2}+\frac{\Gamma^{2}}{4}} n(\omega) \delta(T) e^{i \Omega T} \\
& =\frac{\Gamma}{\Delta^{2}+\frac{\Gamma^{2}}{4}} n(\omega) . \tag{B3}
\end{align*}
$$

Lo and behold, multiplying the unit energy $\hbar \omega$, we can reproduce the energy spectral density Eq. (18), which was obtained by the more explicit argument with the circuit equation.
[1] A. A. Clerk et al., Rev. Mod. Phys. 82, 1155 (2010).
[2] D. T. Gillespie, Am. J. Phys. 64, 225 (1996).
[3] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions (John Wiley and Sons, New York, 1992).
[4] A. Altland and B. D. Simons, Condensed Matter Field Theory, 2nd ed. (Cambridge University Press, Cambridge, 2010).
[5] S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, New York, 1997).

[^0]: *Electronic address: usami@qc.rcast.u-tokyo.ac.jp

