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In these problems, we explore the Bloch electrons in a 1D periodic potential.

I. SHORT SUMMARY OF BLOCH THEOREM

Let us consider the Schrodinger equation for a single electron with mass m in a potential U(x):

Hio(r) = Hm (5) +v@)| vt
= ey(x), (1)

where H is the Hamiltonian, € is the eigenenergy, ¢ (z) is the eigenstate, and U(xz) is the periodic potential with the
periodicity a, that is,

U(x +a) =U(z), (2)

of N periods in a linear arrangement with periodic boundary conditions. Then, the celebrated Bloch theorem [1-3]
states that ¥ (x), the eigenstates of the periodic Hamiltonian H in Eq. (1), can be written as

di(z) = eMuy (), 3)
where uy(z) is a periodic function,

un(e + a) = up (). (4)
Here, the index k is the wave number, which is written as

27 2

When L is finite (where L = Na, the total length) {k} are taking discrete values with n = 0,+1,£2,--- ,i%. With
L — oo, that is, in the thermodynamic limit, £ becomes continuum taking values from —Z to 7, that is, values inside

the Brillouin zone.
The Bloch theorem stated in Eq. (3) with Eq. (4) is equivalent to saying [1, 2]

Yrp(x +a) = eF (). (6)

II. 1D TIGHT-BINDING MODEL WITH SECOND QUANTIZATION (3]

Let us consider the following 1D tight-binding Hamiltonian,
it oa 1 At on
H = Em hw (alnam — 2) —t Em ajnamﬂ, (7)

which can be considered as an example of H in Eq. (1) after the second quantization [3], where a!, and a,, are the
fermionic creation and annihilation operators with the commutation relation:

{am aly } = amal, + b am = S 8)
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FIG. 1: A periodic potential U(z).

Here the first term is the energies of isolated fermionic oscillators indexed by m with the fermionic vacuum energy
f %hw” (as opposed to the bosonic vacuum energy of “—&—%hw”) and the second term appears as a result of the
tonneling between nearest neighbors, e.g., the m-th and the (m + 1)-th fermionic oscillators. According to the Bloch
theorem, the eigenstates of Eq. (7) are the Bloch states

Yr(@) = (alk) = (zla}[0). (9)
The relation between the isolated harmonic oscillator states (the Wannier states)
Yim(x) = (z|m) = (z|al,|0), (10)
which must be the eigenstates if there were no tunneling, and the Bloch states ¥ (z) in Eq. (9) are
1
|k‘> dT|0> - - eik(ma) 5t |0 ezk(ma)|m (11)
R
B.Z.
|m> _ AT |O 7zk (ma) T|0 7zk(ma |I€ (12)
iy Smtn - 58

Problem 1
Show that the Hamiltonian Eq

(7) can be diagonalized with a; and &L to become

k>0

1
H= Z [(hw — 2t coska) dl&k - 2hw} . (13)

With one election in the mode k, that is, &Ldk =1, we have an eigenenergy

€ = iﬁw — 2t cos ka.

III. 1D TIGHT-BINDING MODEL WITH INSTANTONS [4]

Let us see how the result in the section II can be obtained by instanton methods
potential U(x), while Figure

Figure 1 shows the periodic
shows the inverted one —U(z). The instntons living there are thus more or less the



—-U(X)

FIG. 2: An inverted periodic potential —U(z).

same as in the double-well case we have learned. Here the probability G(a, —a; 7) of finding particle go from —a to a
was given by (note 2017-10-16: Eq. (21))

G(a,—a;T) = U%ef% Z % (TKefnSﬁm )n (15)

n:odd

Now, the difference is that the instantons can start at any position, x = am, and go to the next one, z = (m + 1)a;
likewise, the anti-instantons can start at * = am, and go to the next one, x = (m — 1)a. We thus have the probability
G(jf,ji; 7) of finding an electron go from the j;-th site at © = j;a to the jy-th site at © = jra as

. MW wr 1 5\ = 1 _nSin \ 7™
GUpdnm) =yl g¢ * 2 ] (TKE " ) ) Al (TK@ " ) O(n—n)—(js —ji)- (16)
n=0 n=0
n instanton n anti—instanton
Problem 2
r Problen 2 \
Using the following identity with a dummy index 6
27
do .
8oy = GV i6(a—D) 1
b /0 o ¢ ) (17)
show that
27
do e 1 in
G(jf jisT) = /0 o < %el(Jf_-“w) exp [—; <2hw - 2FLK6_ST cos@)] . (18)

N J

Since G(jy, ji; T) is originally meant to be

Gir,gsim) = (rle” #7s)

2
= [ astisiore oo, (19)
0
from Eq. (18) we have
1 in
g = ihw —9hKe R cosf (20)
and
mw\i 1
. _ (1™ 150
o = (7)) 75z (21)




Now we see that g9 in Eq. (20) corresponds to Eq. (14) with

ka ~ 6 (22)
and
t~ hEe R (23)
while (j]6) in Eq. (21) corresponds to Eq. (9). Indeed,
(zlk) = (al—= > e m)
f >
1 -
~ (z da!, e*m |z /dx;nelkmm x|z,
o / ) = = (alon)
~8par (2l0)
~ e () = i (ﬂ) (24)
V2 V2 mh

with m'a ~ x}, and x ~ ja.

[1] M. Tinkham, Group theory and Quantum Mechanics (Dover, New York, 2003).

[2] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks/Cole, Belmont, 1976).

[3] A. Altland and B. D. Simons, Condensed Matter Field Theory, 2nd ed. (Cambridge University Press, Cambridge, 2010).
[4] Sidney Coleman, Aspect of Symmetry, (Cambridge University Press, Cambridge 1985), Chapter 7.



	Short summary of Bloch theorem
	1D tight-binding model with second quantization AS
	1D tight-binding model with instantons Coleman
	References

