Report Problems

Koji Usami*
(Dated: December 15, 2017)
In these problems, we explore the Bloch electrons in a 1D periodic potential.

I. SHORT SUMMARY OF BLOCH THEOREM

Let us consider the Schrödinger equation for a single electron with mass m in a potential $U(x)$:

$$
\begin{align*}
H \psi(x) & =\left[-\frac{\hbar^{2}}{2 m}\left(\frac{\partial}{\partial x}\right)^{2}+U(x)\right] \psi(x) \\
& =\varepsilon \psi(x) \tag{1}
\end{align*}
$$

where H is the Hamiltonian, ε is the eigenenergy, $\psi(x)$ is the eigenstate, and $U(x)$ is the periodic potential with the periodicity a, that is,

$$
\begin{equation*}
U(x+a)=U(x) \tag{2}
\end{equation*}
$$

of N periods in a linear arrangement with periodic boundary conditions. Then, the celebrated Bloch theorem [1-3] states that $\psi(x)$, the eigenstates of the periodic Hamiltonian H in Eq. (1), can be written as

$$
\begin{equation*}
\psi_{k}(x)=e^{i k x} u_{k}(x) \tag{3}
\end{equation*}
$$

where $u_{k}(x)$ is a periodic function,

$$
\begin{equation*}
u_{k}(x+a)=u_{k}(x) \tag{4}
\end{equation*}
$$

Here, the index k is the wave number, which is written as

$$
\begin{equation*}
k=\frac{2 \pi}{N a} n=\frac{2 \pi}{L} n \tag{5}
\end{equation*}
$$

When L is finite (where $L=N a$, the total length) $\{k\}$ are taking discrete values with $n=0, \pm 1, \pm 2, \cdots, \pm \frac{N}{2}$. With $L \rightarrow \infty$, that is, in the thermodynamic limit, k becomes continuum taking values from $-\frac{\pi}{a}$ to $\frac{\pi}{a}$, that is, values inside the Brillouin zone.

The Bloch theorem stated in Eq. (3) with Eq. (4) is equivalent to saying [1, 2]

$$
\begin{equation*}
\psi_{k}(x+a)=e^{i k a} \psi_{k}(x) \tag{6}
\end{equation*}
$$

II. 1D TIGHT-BINDING MODEL WITH SECOND QUANTIZATION [3]

Let us consider the following 1 D tight-binding Hamiltonian,

$$
\begin{equation*}
H=\sum_{m} \hbar \omega\left(\hat{a}_{m}^{\dagger} \hat{a}_{m}-\frac{1}{2}\right)-t \sum_{m} \hat{a}_{m}^{\dagger} \hat{a}_{m+1}, \tag{7}
\end{equation*}
$$

which can be considered as an example of H in Eq. (1) after the second quantization [3], where \hat{a}_{m}^{\dagger} and \hat{a}_{m} are the fermionic creation and annihilation operators with the commutation relation:

$$
\begin{equation*}
\left\{\hat{a}_{m}, \hat{a}_{m^{\prime}}^{\dagger}\right\}=\hat{a}_{m} \hat{a}_{m}^{\dagger}+\hat{a}_{m^{\prime}}^{\dagger} \hat{a}_{m}=\delta_{m m^{\prime}} \tag{8}
\end{equation*}
$$

[^0]

FIG. 1: A periodic potential $U(x)$.

Here the first term is the energies of isolated fermionic oscillators indexed by m with the fermionic vacuum energy of " $-\frac{1}{2} \hbar \omega$ " (as opposed to the bosonic vacuum energy of " $+\frac{1}{2} \hbar \omega$ ") and the second term appears as a result of the tonneling between nearest neighbors, e.g., the m-th and the $(m+1)$-th fermionic oscillators. According to the Bloch theorem, the eigenstates of Eq. (7) are the Bloch states,

$$
\begin{equation*}
\psi_{k}(x)=\langle x \mid k\rangle=\langle x| \hat{a}_{k}^{\dagger}|0\rangle . \tag{9}
\end{equation*}
$$

The relation between the isolated harmonic oscillator states (the Wannier states)

$$
\begin{equation*}
\psi_{m}(x)=\langle x \mid m\rangle=\langle x| \hat{a}_{m}^{\dagger}|0\rangle, \tag{10}
\end{equation*}
$$

which must be the eigenstates if there were no tunneling, and the Bloch states $\psi_{k}(x)$ in Eq. (9) are

$$
\begin{align*}
& |k\rangle=\hat{a}_{k}^{\dagger}|0\rangle=\frac{1}{\sqrt{N}} \sum_{m} e^{i k(m a)} \hat{a}_{m}^{\dagger}|0\rangle=\frac{1}{\sqrt{N}} \sum_{m} e^{i k(m a)}|m\rangle \tag{11}\\
& |m\rangle=\hat{a}_{m}^{\dagger}|0\rangle=\frac{1}{\sqrt{N}} \sum_{k}^{B . Z .} e^{-i k(m a)} \hat{a}_{k}^{\dagger}|0\rangle=\frac{1}{\sqrt{N}} \sum_{k}^{B . Z .} e^{-i k(m a)}|k\rangle . \tag{12}
\end{align*}
$$

Problem 1

Show that the Hamiltonian Eq. (7) can be diagonalized with \hat{a}_{k} and \hat{a}_{k}^{\dagger} to become

$$
\begin{equation*}
H=\sum_{k \geq 0}\left[(\hbar \omega-2 t \cos k a) \hat{a}_{k}^{\dagger} \hat{a}_{k}-\frac{1}{2} \hbar \omega\right] . \tag{13}
\end{equation*}
$$

With one election in the mode k, that is, $\hat{a}_{k}^{\dagger} \hat{a}_{k}=1$, we have an eigenenergy

$$
\begin{equation*}
\varepsilon_{k}=\frac{1}{2} \hbar \omega-2 t \cos k a \tag{14}
\end{equation*}
$$

III. 1D TIGHT-BINDING MODEL WITH INSTANTONS [4]

Let us see how the result in the section II can be obtained by instanton methods. Figure 1 shows the periodic potential $U(x)$, while Figure 2 shows the inverted one $-U(x)$. The instntons living there are thus more or less the

FIG. 2: An inverted periodic potential $-U(x)$.
same as in the double-well case we have learned. Here the probability $G(a,-a ; \tau)$ of finding particle go from $-a$ to a was given by (note 2017-10-16: Eq. (21))

$$
\begin{equation*}
G(a,-a ; \tau)=\sqrt{\frac{m \omega}{\pi \hbar}} e^{-\frac{\omega \tau}{2}} \sum_{\text {n:odd }} \frac{1}{n!}\left(\tau K e^{-\frac{n S_{i n}}{\hbar}}\right)^{n} . \tag{15}
\end{equation*}
$$

Now, the difference is that the instantons can start at any position, $x=a m$, and go to the next one, $x=(m+1) a$; likewise, the anti-instantons can start at $x=a m$, and go to the next one, $x=(m-1) a$. We thus have the probability $G\left(j_{f}, j_{i} ; \tau\right)$ of finding an electron go from the j_{i}-th site at $x=j_{i} a$ to the j_{f}-th site at $x=j_{f} a$ as

$$
\begin{equation*}
G\left(j_{f}, j_{i} ; \tau\right)=\sqrt{\frac{m \omega}{\pi \hbar}} e^{-\frac{\omega \tau}{2}} \sum_{n=0}^{\infty} \underbrace{\frac{1}{n!}\left(\tau K e^{-\frac{n S_{i n}}{\hbar}}\right)^{n}}_{n \text { instanton }} \sum_{\bar{n}=0}^{\infty} \underbrace{\frac{1}{\bar{n}!}\left(\tau K e^{-\frac{n S_{i n}}{\hbar}}\right)^{\bar{n}}}_{\bar{n} \text { anti-instanton }} \delta_{(n-\bar{n})-\left(j_{f}-j_{i}\right)} . \tag{16}
\end{equation*}
$$

Problem 2

Using the following identity with a dummy index θ

$$
\begin{equation*}
\delta_{a b}=\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} e^{i \theta(a-b)} \tag{17}
\end{equation*}
$$

show that

$$
\begin{equation*}
G\left(j_{f}, j_{i} ; \tau\right)=\int_{0}^{2 \pi} \frac{d \theta}{2 \pi}\left(\sqrt{\frac{m \omega}{\pi \hbar}} e^{i\left(j_{f}-j_{i}\right) \theta}\right) \exp \left[-\frac{\tau}{\hbar}\left(\frac{1}{2} \hbar \omega-2 \hbar K e^{-\frac{S_{i n}}{\hbar}} \cos \theta\right)\right] . \tag{18}
\end{equation*}
$$

Since $G\left(j_{f}, j_{i} ; \tau\right)$ is originally meant to be

$$
\begin{align*}
G\left(j_{f}, j_{i} ; \tau\right) & =\left\langle j_{f}\right| e^{-\frac{\tau}{\hbar} H}\left|j_{i}\right\rangle \\
& =\int_{0}^{2 \pi} d \theta\left\langle j_{f} \mid \theta\right\rangle e^{-\frac{\tau}{\hbar} \varepsilon_{\theta}}\left\langle\theta \mid j_{i}\right\rangle \tag{19}
\end{align*}
$$

from Eq. (18) we have

$$
\begin{equation*}
\varepsilon_{\theta}=\frac{1}{2} \hbar \omega-2 \hbar K e^{-\frac{S_{i n}}{\hbar}} \cos \theta \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle j \mid \theta\rangle=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2 \pi}} e^{i j \theta} \tag{21}
\end{equation*}
$$

Now we see that ε_{θ} in Eq. (20) corresponds to Eq. (14) with

$$
\begin{equation*}
k a \sim \theta \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
t \sim \hbar K e^{-\frac{S_{i n}}{\hbar}} \tag{23}
\end{equation*}
$$

while $\langle j \mid \theta\rangle$ in Eq. (21) corresponds to Eq. (9). Indeed,

$$
\begin{align*}
\langle x \mid k\rangle & =\langle x| \frac{1}{\sqrt{N}} \sum_{m^{\prime}} e^{i k m^{\prime} a}\left|m^{\prime}\right\rangle \\
& \sim\langle x| \frac{1}{\sqrt{2 \pi}} \int d x_{m}^{\prime} e^{i k x_{m}^{\prime}}\left|x_{m}^{\prime}\right\rangle=\frac{1}{\sqrt{2 \pi}} \int d x_{m}^{\prime} e^{i k x_{m}^{\prime}} \underbrace{\left\langle x \mid x_{m}^{\prime}\right\rangle}_{\sim \delta_{x x_{m}^{\prime}}\langle x \mid 0\rangle} \\
& \sim \frac{1}{\sqrt{2 \pi}} e^{i k x}\langle x \mid 0\rangle=\frac{1}{\sqrt{2 \pi}} e^{i j \theta}\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}} \tag{24}
\end{align*}
$$

with $m^{\prime} a \sim x_{m}^{\prime}$ and $x \sim j a$.
[1] M. Tinkham, Group theory and Quantum Mechanics (Dover, New York, 2003).
[2] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks/Cole, Belmont, 1976).
[3] A. Altland and B. D. Simons, Condensed Matter Field Theory, 2nd ed. (Cambridge University Press, Cambridge, 2010).
[4] Sidney Coleman, Aspect of Symmetry, (Cambridge University Press, Cambridge 1985), Chapter 7.

[^0]: *Electronic address: usami@qc.rcast.u-tokyo.ac.jp

