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In these problems, we explore the Bloch electrons in a 1D periodic potential.

I. SHORT SUMMARY OF BLOCH THEOREM

Let us consider the Schrödinger equation for a single electron with mass m in a potential U(x):

Hψ(x) =

[
− h̄2

2m

(
∂

∂x

)2

+ U(x)

]
ψ(x)

= εψ(x), (1)

where H is the Hamiltonian, ε is the eigenenergy, ψ(x) is the eigenstate, and U(x) is the periodic potential with the
periodicity a, that is,

U(x+ a) = U(x), (2)

of N periods in a linear arrangement with periodic boundary conditions. Then, the celebrated Bloch theorem [1–3]
states that ψ(x), the eigenstates of the periodic Hamiltonian H in Eq. (1), can be written as

ψk(x) = eikxuk(x), (3)

where uk(x) is a periodic function,

uk(x+ a) = uk(x). (4)

Here, the index k is the wave number, which is written as

k =
2π

Na
n =

2π

L
n. (5)

When L is finite (where L = Na, the total length) {k} are taking discrete values with n = 0,±1,±2, · · · ,±N
2 . With

L→ ∞, that is, in the thermodynamic limit, k becomes continuum taking values from −π
a to π

a , that is, values inside
the Brillouin zone.
The Bloch theorem stated in Eq. (3) with Eq. (4) is equivalent to saying [1, 2]

ψk(x+ a) = eikaψk(x). (6)

II. 1D TIGHT-BINDING MODEL WITH SECOND QUANTIZATION [3]

Let us consider the following 1D tight-binding Hamiltonian,

H =
∑
m

h̄ω

(
â†mâm − 1

2

)
− t

∑
m

â†mâm+1, (7)

which can be considered as an example of H in Eq. (1) after the second quantization [3], where â†m and âm are the
fermionic creation and annihilation operators with the commutation relation:{

âm, â
†
m′

}
= âmâ

†
m + â†m′ âm = δmm′ . (8)
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FIG. 1: A periodic potential U(x).

Here the first term is the energies of isolated fermionic oscillators indexed by m with the fermionic vacuum energy
of “− 1

2 h̄ω” (as opposed to the bosonic vacuum energy of “+ 1
2 h̄ω”) and the second term appears as a result of the

tonneling between nearest neighbors, e.g., the m-th and the (m+ 1)-th fermionic oscillators. According to the Bloch
theorem, the eigenstates of Eq. (7) are the Bloch states,

ψk(x) = ⟨x|k⟩ = ⟨x|â†k|0⟩. (9)

The relation between the isolated harmonic oscillator states (the Wannier states)

ψm(x) = ⟨x|m⟩ = ⟨x|â†m|0⟩, (10)

which must be the eigenstates if there were no tunneling, and the Bloch states ψk(x) in Eq. (9) are

|k⟩ = â†k|0⟩ =
1√
N

∑
m

eik(ma)â†m|0⟩ = 1√
N

∑
m

eik(ma)|m⟩ (11)

|m⟩ = â†m|0⟩ = 1√
N

B.Z.∑
k

e−ik(ma)â†k|0⟩ =
1√
N

B.Z.∑
k

e−ik(ma)|k⟩. (12)

Problem 1� �
Show that the Hamiltonian Eq. (7) can be diagonalized with âk and â†k to become

H =
∑
k≥0

[
(h̄ω − 2t cos ka) â†kâk − 1

2
h̄ω

]
. (13)

� �
With one election in the mode k, that is, â†kâk = 1, we have an eigenenergy

εk =
1

2
h̄ω − 2t cos ka. (14)

III. 1D TIGHT-BINDING MODEL WITH INSTANTONS [4]

Let us see how the result in the section II can be obtained by instanton methods. Figure 1 shows the periodic
potential U(x), while Figure 2 shows the inverted one −U(x). The instntons living there are thus more or less the
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FIG. 2: An inverted periodic potential −U(x).

same as in the double-well case we have learned. Here the probability G(a,−a; τ) of finding particle go from −a to a
was given by (note 2017-10-16: Eq. (21))

G(a,−a; τ) =
√
mω

πh̄
e−

ωτ
2

∑
n:odd

1

n!

(
τKe−

nSin
h̄

)n

. (15)

Now, the difference is that the instantons can start at any position, x = am, and go to the next one, x = (m + 1)a;
likewise, the anti-instantons can start at x = am, and go to the next one, x = (m− 1)a. We thus have the probability
G(jf , ji; τ) of finding an electron go from the ji-th site at x = jia to the jf -th site at x = jfa as

G(jf , ji; τ) =

√
mω

πh̄
e−

ωτ
2

∞∑
n=0

1

n!

(
τKe−

nSin
h̄

)n

︸ ︷︷ ︸
n instanton

∞∑
n̄=0

1

n̄!

(
τKe−

nSin
h̄

)n̄

︸ ︷︷ ︸
n̄ anti−instanton

δ(n−n̄)−(jf−ji). (16)

Problem 2� �
Using the following identity with a dummy index θ

δab =

∫ 2π

0

dθ

2π
eiθ(a−b), (17)

show that

G(jf , ji; τ) =

∫ 2π

0

dθ

2π

(√
mω

πh̄
ei(jf−ji)θ

)
exp

[
− τ
h̄

(
1

2
h̄ω − 2h̄Ke−

Sin
h̄ cos θ

)]
. (18)� �

Since G(jf , ji; τ) is originally meant to be

G(jf , ji; τ) = ⟨jf |e−
τ
h̄H |ji⟩

=

∫ 2π

0

dθ⟨jf |θ⟩e−
τ
h̄ εθ ⟨θ|ji⟩, (19)

from Eq. (18) we have

εθ =
1

2
h̄ω − 2h̄Ke−

Sin
h̄ cos θ (20)

and

⟨j|θ⟩ =
(mω
πh̄

) 1
4 1√

2π
eijθ. (21)
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Now we see that εθ in Eq. (20) corresponds to Eq. (14) with

ka ∼ θ (22)

and

t ∼ h̄Ke−
Sin
h̄ , (23)

while ⟨j|θ⟩ in Eq. (21) corresponds to Eq. (9). Indeed,

⟨x|k⟩ = ⟨x| 1√
N

∑
m′

eikm
′a|m′⟩

∼ ⟨x| 1√
2π

∫
dx′me

ikx′
m |x′m⟩ = 1√

2π

∫
dx′me

ikx′
m ⟨x|x′m⟩︸ ︷︷ ︸

∼δxx′
m

⟨x|0⟩

∼ 1√
2π
eikx⟨x|0⟩ = 1√

2π
eijθ

(mω
πh̄

) 1
4

(24)

with m′a ∼ x′m and x ∼ ja.
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