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The true power of the Feynman path integral method can be seen when the semi-classical limits
h̄ → 0 of quantum theories are dealt with. This includes the situation in which a macroscopic objest
being rest at a classical equilibrium position and the quantum fluctuations around it are asked. Here
we shall learn the Feynman path integral method for treating a massive particle in a well, i.e., a
simple harmonic oscillator.

I. STATIONARY PHASE APPROXIMATION TO THE PATH INTEGRAL [1]

We learned that the quantum probability amplitude for the particle to go from a space-time point (qi, ti) to (qf , tf )
⟨qf , tf |qi, ti⟩ can be obtained by Feynman path integral :

⟨qf , tf |qi, ti⟩ =

∫ qf

qi

Dq exp

[
i

h̄

∫ tf

ti

dtL(q, q̇)

]
=

∫ qf

qi

Dq exp

[
i

h̄
S[q]

]
, (1)

where L(q, q̇) is the classical Lagrangian of a partical of mass m in a 1-dimensional potential V (q),

L(q, q̇) =
1

2
mq̇2 − V (q), (2)

and ∫ qf

qi

Dq = lim
N→∞

( m

2πih̄∆t

)N
2

∫ ∞

−∞
dqN−1

∫ ∞

−∞
dqN−2 · · ·

∫ ∞

−∞
dq1. (3)

is a infinite-dimensional path integral with {qf , qN−1, qN−2, · · · , q1, qi} representing a single path (trajectory) of the
particle in a coordinate space and S[q] is the action. The true power of the Feynman path integral method can be
seen when the semi-classical limits of quantum theories are dealt with.
To see how the solutions of classical equations of motion appear in the path integral, let us explore the stationary

phase (saddle-point) approximation to the path integral. The first step is to find the solutions of the classical equation
of motion associated with the Lagrangian L(q, q̇), that is, the Euler-Lagrange equation;

d

dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= 0. (4)

This follows from Hamilton’s principle, which states that the unique classical path qcl is determined by minimizing

the action S[q] =
∫ tf
ti

dtL(q, q̇). For L(q, q̇) in Eq. (2) it is given by

mq̈ +
∂V (q)

∂q
= 0. (5)

As the second step, let qcl be a only solution of Eq. (5) and set q = qcl+r. The action S[q] ≡
∫ t

0
dt′L(q, q̇) in Eq. (1)
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can then be Taylor-expanded as

S[q] =

∫ t

0

dt′L(q, q̇)

= S[qcl] +

∫ t

0

dt′
δS[qcl]

δq(t′)︸ ︷︷ ︸
0

r(t′) +
1

2

∫ t

0

dt′
∫ t

0

dt′′r(t′)
δ2S[qcl]

δq(t′)δq(t′′)
r(t′′) + · · ·

≃ S[qcl] +
1

2

∫ t

0

dt′
∫ t

0

dt′′r(t′)
δ2S[qcl]

δq(t′)δq(t′′)
r(t′′), (6)

where δS[qcl]
δq(t′) = 0 is ensured by the classical solution qcl. Here δS[qcl]

δq(t′) and δ2S[qcl]
δq(t′)δq(t′′) are the functional derivatives.

The meaning of the functional derivatives can be made clear latter on. Finally, by plugging Eq. (6) into Eq. (1) we
have the semiclassical (sationary phase, or, saddle-point) approximation to the path integral:

⟨qf , tf |qi, ti⟩ =

∫ qf

qi

Dq exp

[
i

h̄
S[q]

]
= exp

[
i

h̄
S[qcl]

]
︸ ︷︷ ︸
classical path

∫ qf

qi

Dr exp

[
1

2

∫ t

0

dt′
∫ t

0

dt′′r(t′)
δ2S[qcl]

δq(t′)δq(t′′)
r(t′′)

]
︸ ︷︷ ︸

quantum fluctuation

. (7)

This semiclassical approximation, Eq. (7), appears to be very appealing: the classical path associated with the classical
action S[qcl] are embellished with the quantum fluctuation. Note that the quantum fluctuation is now completely
described by c-numbers as opposed to quantum operators.
To make things more explicit let us repeat the same calculation with the form L(q, q̇) in Eq. (2). By expanding the

action S[qcl] in r(t) explicitly we have

S[q] =

∫ ∞

0

dt′
(
1

2
mq̇2 − V (q)

)
≃

∫ t

0

dt′
[
1

2
m

(
˙qcl
2 + 2 ˙qclṙ + ṙ2

)
−
(
V (qcl) +

∂V (qcl)

∂q
r +

1

2

∂2V (qcl)

∂q2
r2
)]

=

∫ t

0

dt′
[
1

2
m ˙qcl

2 − V (qcl)

]
+

∫ t

0

dt′
[
m ˙qclṙ −

∂V (qcl)

∂q
r

]
+

∫ t

0

dt′
[
1

2
mṙ2 − 1

2

∂2V (qcl)

∂q2
r2
]

= S[qcl]−
∫ t

0

dt′
[
mq̈cl +

∂V (qcl)

∂q

]
︸ ︷︷ ︸

0

r(t′)− 1

2

∫ t

0

dt′r(t′)

[
m

d2

dt′2
+

∂2V (qcl)

∂q2

]
r(t′)

= S[qcl]−
1

2

∫ t

0

dt′r(t′)

[
m

d2

dt′2
+

∂2V (qcl)

∂q2

]
r(t′), (8)

where, in the third line, we performed the integrations by part,∫ t

0

dt′m ˙qclṙ = [m ˙qclr]
t
0︸ ︷︷ ︸

0

−
∫ t

0

dt′mq̈clr (9)

∫ t

0

dt′mṙ2 = [mṙr]
t
0︸ ︷︷ ︸

0

−
∫ t

0

dt′mr̈r. (10)

By compared with Eq. (6) we obtain the following relation:

1

2

∫ t

0

dt′
∫ t

0

dt′′r(t′)
δ2S[qcl]

δq(t′)δq(t′′)
r(t′′) = −1

2

∫ t

0

dt′r(t′)

[
m

d2

dt′2
+

∂2V (qcl)

∂q2

]
r(t′). (11)

A. Example: quantum harmonic oscillator

Let us apply the above argument to a massive particle in a harmonic potential V = 1
2kq

2, that is, a harmonic
oscillator. The classical equation of motion is mq̈ + kq = 0. Imposing the boundary conditions q(0) = q(t) = 0, the
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solution of the classical motion is obiously qcl = 0. We thus have

GHO(0, 0; t) ≡ ⟨qf = 0, t|qi = 0, 0⟩ =

∫
Dq exp

[
i

h̄
S[q]

]
≃ exp

[
i

h̄
S[qcl]

]
︸ ︷︷ ︸

1

∫
Dr exp

[
− i

h̄

∫ t

0

dt′r(t′)

[
1

2

(
m

d2

dt′2
+

∂2V (qcl)

∂q2

)]
r(t′)

]

=

∫
Dr exp

[
− i

h̄

∫ t

0

dt′r(t′)
m

2

(
d2

dt′2
+ ω2

)
r(t′)

]
, (12)

where ω =
√

k
m is the eigenfrequency of the oscillator. This integral is again Gaussian form, so we can perform the

Gaussian integration. To perform the integral let us tentatively assume the differential operator −m
2

(
d2

dt′2 + ω2
)
be

a finite-dimensional matrix A. The integral then becomes familiar one as Eq. (A3) and get

GHO(0, 0; t) = N 1√
det [A]

, (13)

with N absorbed several constants, which may be divergent after taking the continuum limit, though. Then the
question is; what is det [A]? The answer can be found by expressing A in terms of eigenvalues, that is,

Avn ≡ −m

2

(
d2

dt′2
+ ω2

)
vn

= ϵnvn. (14)

The eigestates vn are given by

vn = sin

(
nπt′

t

)
(15)

with the eigenvalues

ϵn =
m

2

(
−ω2 +

(nπ
t

)2
)

(16)

for n = 1, 2, · · ·∞. Thus the determinant of A is given by

det [A] =

∞∏
n=1

ϵn =

∞∏
n=1

m

2

(
−ω2 +

(nπ
t

)2
)
. (17)

We then notice that 1√
det[A]

is obtained from the infinite product of
(
−ω2 +

(
nπ
t

)2)− 1
2

, each of which is divergent

for nπ
t = ω, a very alarming situation!

To circumvent the calculation of the dangerous determinant explicitly, we can exploit the well-behaved result
obtained for a free particle. Indeed, Gfree(0, 0; t) is the special case of GHO(0, 0; t) for V (q) = 0, that is, ω = 0. Let
us evaluate the following quantity,

GHO(0, 0; t) =

(
GHO(0, 0; t)

Gfree(0, 0; t)

)
Gfree(0, 0; t). (18)

The quantity inside the parentheses in Eq. (18) gives

GHO(0, 0; t)

Gfree(0, 0; t)
=

N
∏∞

n=1

[
m
2

(
−ω2 +

(
nπ
t

)2)]− 1
2

N
∏∞

n=1

[
m
2

(
nπ
t

)2]− 1
2

=
∞∏

n=1

[
1−

(
ωt

nπ

)2
]− 1

2

=

√
ωt

sin(ωt)
. (19)
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Thus, with Eq.(18), GHO(0, 0; t) bocomes

GHO(0, 0; t) =

√
ωt

sin(ωt)
Gfree(0, 0; t) =

√
mω

2πih̄ sin(ωt)
Θ(t), (20)

where we used

Gfree(qf , qi; t) =

√
1

4π
(

ih̄
2m

)
t
exp

[
− (qf − qi)

2

4
(

ih̄
2m

)
t

]
Θ(t), (21)

which we obtained previously.

Appendix A: Gaussian integration

First, some mathematics. The most fundamental Gaussian integration is∫ ∞

−∞
dxe−

1
2ax

2

=

√
2π

a
. (A1)

An interesting and useful Gaussian integration is∫ ∞

−∞
dxe−

1
2ax

2+bx =

√
2π

a
e

b2

2a . (A2)

The Multi-dimensional expansion of Eq. (A1) is∫ ∞

−∞
dve−

1
2v

TAv = (2π)
N
2

1√
det [A]

, (A3)

and that of Eq. (A2) is ∫ ∞

−∞
dve−

1
2v

TAv+j·v = (2π)
N
2

1√
det [A]

e
1
2j

TA−1j , (A4)
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