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A charged particle moving in a magnetic field experiences the Lorents force. Quantum mechan-
ically the charged particle experiences not only the Lorents force but also the phase shift, which
persists even in the space where there is no magnetic field but vector potential. We shall look
at this bizarre phase called the Aharonov-Bohm phase with Feynman path integral method. This
phase is the first example of the topological terms in path integrals. The many-body version of
Aharonov-Bohm phase is seen in ring-shaped superconductor leading to flux quantization.

I. VECTOR POTENTIAL [1, 2]

Let us start by considering a charged particle in a magnetic field B = ∇×A, where A is the vector potential. The
starting point is to assume that the probability amplitude that the particle goes from x at time t to x+∆x at time
t+∆t is given by

⟨x+∆x, t+∆t|x, t⟩ = ⟨x+∆x, t+∆t|x, t⟩A=0 exp

[
i

h̄
qA(x) ·∆x

]
︸ ︷︷ ︸

extra phase factor

. (1)

where ⟨x+∆x, t+∆t|x, t⟩A=0 is the same probability amplitude but A is absent. Here ∆t and ∆x are assumed to
be small. Equation (1) states that the particle acquires the extra phase which depends on the vector potential A and
the path. With Feynman path integral the above statement means

⟨xf , tf |xi, ti⟩ =

∫ xf

xi

Dx exp

[
i

h̄
S[x]

]
=

∫ N−1∏
k=1

dxk exp

[
i

h̄
S[xk]

]

=

∫ N−1∏
k=1

dxk exp

[
i

h̄
∆t

N−1∑
k=0

(L0(xk, ẋk))

]
exp

[
i

h̄

n−1∑
k=0

qA(xk) ·∆xk

]
︸ ︷︷ ︸

extra phase factor

=

∫ N−1∏
k=1

dxk exp

[
i

h̄
∆t

N−1∑
k=0

(L0(xk, ẋk))

]
exp

[
i

h̄
∆t

n−1∑
k=0

qA(xk) · ẋk

]
︸ ︷︷ ︸

extra phase factor

=

∫ N−1∏
k=1

dxk exp

[
i

h̄
∆t

N−1∑
k=0

{(L0(xk, ẋk)) + qA(xk) · ẋk}

]

=

∫ xf

xi

Dx exp

[
i

h̄

∫ tf

ti

{(L0(x, ẋ)) + qA(x) · ẋ}
]
, (2)

where L0(x, ẋ) =
1
2mẋ2 is the Lagrangian with A being absent. Equation. (2) thus suggests that the action S[x] can

be written as

S[x] = S0[x] + Stop[x]

=

∫ tf

ti

dtL0(x, ẋ) + q

∫ tf

ti

dtA(x) · ẋ, (3)
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where S0[x] is the action with A being absent.
It is reassuring that the Lagrangian for the charged particle in the magnetic field is indeed given by

L(x, ẋ) =
1

2
mẋ2 + qA · ẋ, (4)

which also leads to the well-known Hamiltonian by Legendre transformation:

H(x,p) = ẋp− L(x, ẋ)

=
1

2m
(p− qA)

2

=
1

2m
Π2, (5)

where

p =
∂L(x, ẋ)

∂ẋ
= mẋ+ qA (6)

is the canonical momentum and satisfies the standard commutation relation

[pi, pj ] = 0. (7)

The statement Eq. (1) is thus the same as that the cannonical momentum p in the free particle should be displaced
by −qA in the magnetic field, that is, the famous rule:

p = −ih̄∇ → p− qA = −ih̄∇− qA. (8)

If you happened to know the differential geometry [4], this rule must remind you of the covariant derivative of one-form
on a manifold with A identified with the Christoffel symbols.
The shifted momentum

Π = p− qA = m
dx

dt
(9)

is called the kinematical momentum. The kinematical momentum is the observable (thus gauge-invariant) momentum
but follows the strange commutation relation

[Πi,Πj ] = ih̄qϵijkBk, (10)

as is easily verified with p = −ih̄∇, where B = ∇×A is the magnetic field.

II. LORENTZ FORCE

To see that the derived Hamiltonian Eq. (22) from the assumption Eq. (1) is really sensible, let us examine the
equation of motion for the charged particle. The Heisenberg equation of motion for the first component of kinematical
momentum Π1 is given by

mẍ1 = Π̇1 =
i

h̄
[H,Π1]

=
i

2mh̄

[
Π2

1 +Π2
2 +Π2

3,Π1

]
=

q

2m
{(Π2B3 −Π3B2)− (B2Π3 −B3Π2)}

=
q

2
{(ẋ2B3 − ẋ3B2)− (B2ẋ3 −B2ẋ3)}

=
q

2
{(ẋ×B)1 − (B × ẋ)1} (11)

where the commutation relation Eq. (10) was used. The similar equations are obtained for Π2 and Π3 leading to

mẍ =
q

2
(ẋ×B −B × ẋ) . (12)

The right-hand-side of Eq. (12) is indeed the quantum-mechnical version of the Lorentz force. The important point
here is that there is no gauge-dependent quantities, such as vector potential A and cannonical momentum p, appeared
in Eq. (12). Thus, even though we start from the manifestly gauge-dependent Lagrangian, Eq. (4), the equation of
motion, that is, the observable consequence of the gauge-dependent Lagrangian, turns out to be gauge-invariant!
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III. AHARONOV-BOHM PHASE

FIG. 1: A ring on the xy−plane in which a charged particle moving. The inter (outer) radius of the ring is ρa (ρb). There is
an uniform magnetic field B at the center region of the ring up to radius ρ0 < ρa

The above sane and peaceful statement is challenged by Aharonov and Bohm in 1959 [5]. Now suppose that a
charged particle moving in a ring on the xy−plane as shown in Fig 1. This not-simply-connected topology of the
ring would turn out to be critical. Here the inter (outer) radius of the ring is ρa (ρb). It is assumed that there is an

uniform magnetic field B =

 0
0
B

 at the center region of the ring up to radius ρ0 < ρa (shown red in Fig 1) but

there is no at the ring as shown in Fig 1. Thus the particle within the ring would not experimence the Lorentz force.
However, what Aharonov and Bohm discovered in 1959 is that quantum mechanically the charged particle experi-

ences the phase shift, which persists even in a space where there is no magnetic field but vector potential. Indeed in
the cylindrical coordinates the vector potential in the ring at radius ρ ∈ [ρa, ρb] can be given by

A =

 Ar

Aϕ

Az

 =

 0
Bρ2

0

2ρ

0

 . (13)

This can be verfiied by the Stokes’ theorem:∫
disk bouned by radius ρ

B · dS =

∫
disk bouned by radius ρ

(∇×A) · dS

=

∮
circle bouned by radius ρ

A · dl. (14)

Here the left-hand-side yields ∫
disk bouned by radius ρ

B · dS = πρ20B, (15)

while the right-hand-side yields ∮
circle bouned by radius ρ

A · dl = 2πρAϕ, (16)

leading to Eq. (13).
The Lagrangian for this is given by

LAB(ϕ, ϕ̇) =
m

2

(
ρϕ̇

)2

+ qAϕ

(
ρϕ̇

)
, (17)
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where in the cylindrical coordinate system (r, ϕ, z) the coordinate of the particle can be given by ρϕ where ρ ∈ [ρa, ρb]
is the radial coordinate and ϕ ∈ [0, 2π] is the angular coordinate. Here we assumed that the radial movement and
z−axis movement are tightly-constrained and fronzen. The Lagrangian Eq. (17) is thus the same type as the one
given in Eq. (4) even though there is no magnetic field at the particle. The extra action Stop[ϕ] thus becomes

Stop[ϕ] =

∫ tf

ti

dt qAϕ

(
ρ
dϕ

dt

)
=

∫ ϕf

ϕi

qρAϕdϕ = q ρAϕ︸︷︷︸
1
2Bρ2

0

[ϕ(tf )− ϕ(ti)] = qΦ

(
1

2π
[ϕf − ϕi]

)
, (18)

where Φ is the magnetic flux threaded at the center region, that is,

Φ =

∫
disk bouned by radius ρ

B · dS = πρ0B. (19)

From Eq. (2) the particle aquires the extra phase factor

exp

[
i

h̄
Stop[ϕ]

]
= exp

[
i

h̄

∮
ring

qρAϕdϕ

]
(20)

= exp

[
i
qΦ

h̄

]
, (21)

when it traverses the ring once, that is, [ϕf − ϕi] = 2π. This phase is called Aharonov-Bohm phase.
Like the Lorentz force we have seen before, the Aharonov-Bohm phase aquired by the particle traversing the full

circle can be observable since it can be given by the gauge-invariant quantities Φ, the magnetic flux, according to
Eq. (21). However, this magnetic flux is not directly interacting with the particle in the current geometry. Thus, the
phase appears as a nonlocal effect. Otherwise, we should abandon one of the most fundamental tenets that states
that the observable consequences of the gauge-dependent Lagrangian should be gauge-invariant and think the guage-
dependent formula, Eq. (20), as the more fundamental status than the nonlocal formula but gauge-independent one,
Eq. (21).
This bizarre situation revolving around the Aharonov-Bohm phase has something to do with the nontrivial topology

of the Hilbert space where the charged particle lives in the current problem (that is, the ring or circle) as well as the
existence of magnetic field. Equations (20) and (21) are the first examples of the topological terms in path integrals.
We shall learn that the similar terms appear in the different circumstances and dictate the weird but observable
behaviors.

IV. FLUX QUANTIZATION

As a final remark on the topological terms, we shall look at the relation between the Aharonov-Bohm phase and a
quantizatied physical quantity flux in the superconducting ring, that is, flux quantization. To see this connection, we
shall first study some basic things of superconductivity.

A. From Schrödinger to London [1]

The Schrödinger equation of a charged particle in an electromagnetic field with a vector potential A can be given
by

ih̄
∂

∂t
ψ(r, t) = Hψ(r, t)

=
1

2m
(−ih̄∇− qA) (−ih̄∇− qA)ψ. (22)

Since the probability density P (r, t) in quantum mechanics is given in terms of the wave function ψ(r, t) by

P (r, t) = ψ∗(r, t)ψ(r, t), (23)
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the probability current J(r, t) can be obtained from the continuity equation:

∂

∂t
P (r, t) = −∇ · J(r, t). (24)

We can show that

J(r, t) =

((
−ih̄∇− qA

2m
ψ

)∗

ψ + ψ∗
(
−ih̄∇− qA

2m
ψ

))
. (25)

Here is the crucial point: we new consider the wave function ψ(r) in Eq. (22) as a macroscopic one by identifying
it as an order parameter of a superconducting metal;

ψ(r, t) =
√
ρ(r)eiθ(r), (26)

where ρ is the charge density and θ is the phase. Equation. (25) is now nothing but the electric current as opposed
to the probability current. The current can be explicitly given in terms of ρ and θ by

J(r) =
h̄

m

(
∇θ(r)− q

h̄
A(r)

)
ρ(r). (27)

Without the first term Eq. (27) is the so-called second London equation [6];

J(r) = − q

m
ρ(r)A(r), (28)

which explains the perfect conductivity as well as the Meissner effect as follows.

B. Consequences

1. Perfect conductivity [6]

From now on, let us assume that the charge density ρ(r) in the superconductor is homogeneous, that is, ρ(r) = ρ.
In ordinary circumstances this is indeed the case. Taking time derivative of Eq. (28), we have

J̇(r) = −qρ
m

Ȧ(r). (29)

Since Ȧ(r) = −E(r), we have

J̇(r) =
qρ

m
E(r), (30)

which suggests the perfect conductivity. The situation is analogous to the lossless free mass system:

ṗ︸︷︷︸
m

˙J (r)

= F︸︷︷︸
ρqE

. (31)

There were, on the other hand, a loss term, we have

ṗ = −1

τ
p+ F , (32)

and thus

J̇(r) = −1

τ
J(r) +

ρq

m
E, (33)

where τ is the relaxation time [7]. Suppse that the τ is very short, we can set J̇(r) = 0 in Eq. (33). This gives us

J(r) =
ρq

m
τ︸︷︷︸

σ

E, (34)

and recovering the standard Ohm’s law within the Drude theory [7].
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2. Meissner effect [1, 6]

Let us now analyze the consequence of the London equation (27) upon the magnetic field in a superconductor. Let
us start by writing the Maxwell equations

∇ ·B(r) = 0 (35)

∇×B(r) = µ0J(r) (36)

in terms of the vecotor potential A(r), the first one becomes obvious and the second one becomes

∇× (∇×A(r))︸ ︷︷ ︸
B(r)

= µ0J(r). (37)

With the Coulomb gauge ∇ ·A(r) = 0 and using vector identity

∇×∇×A(r) = ∇ (∇ ·A(r))−∇2A(r) (38)

Eq. (37) becomes

∇2A(r) = −µ0J(r). (39)

Using the London equation (27) we have a simple equation for A(r):

∇2A(r) =
µ0ρq

m︸ ︷︷ ︸
1

λL
2

A(r), (40)

where

λL =

√
m

µ0ρq
(41)

is called the London penetration depth [6, 7]. From the second London equation Eq. (28) with ρ(r) = ρ we have
J(r) = − qρ

mA(r). Thus, Eq (39) means (
1

λL2
−∇2

)
J(r) = 0. (42)

Performing further operation ∇× on the both sides of Eq. (40) we have(
1

λL2
−∇2

)
B(r) = 0, (43)

leading to the first London equation.
Let us consider the solution of Eq. (43) for the simple case where the surface of the superconductor is in the xy

plain and the region z > 0 being vacuum (this means B(r) = B(z)). There are two possible cases [8]:

(a) B(z) is parallel to z (that is, B(z) =

 0
0

B(z)

)
(b) B(z) is perpendicular to z (say, along x, that is, B(z) =

 B(z)
0
0

)
As for the case (a) from Eq. (35) we have ∂B

∂z = 0 and thus B should be spatially constant. This leads to ∇×B = 0
and thus from Eq. (36) J(r) = 0. The case (b) satisfies Eq. (35) automatically. Equation (43) becomes(

1

λL2
− ∂2

∂z2

)
B(z) = 0. (44)

Thus the soltion is

B(z) = B0 exp

(
− z

λL

)
, (45)

suggesting the exponential decay of the magnetic field inside the superconductor, i.e., the Meissner effect. The similar
conclusion also holds for the current J(r), that is, the exponential decay of the current inside the superconductor,
since Eq. (42) and Eq. (43) are the same.
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3. Flux quantization [1]

The existence of the θ term in Eq. (27) produces an even more remarkable phenomenon, flux quantization. Let
us consider the similar ring shown in Fig. 1, but this time the ring is in the superconducting state. Since the
superconducting current flows only near the surface down to the London penetration depth, Eq. (41), the interior
current of the ring should be zero. It is emphasized that with the θ term in Eq. (27) the vector potential A(r) is not
necessarily zero in the inner region of the ring where the current J(r) is zero. From Eq. (27) this situation leads to

h̄∇θ(r) = qA(r). (46)

Taking the line integral along the interior of the ring, we have for the left-hand-side of Eq. (46)

h̄

∮
∇θ(r) · dl = 2πn h̄, (47)

to guarantee the single-valuedness of the wave function Eq. (26). The line integral of the right-hand-side of Eq. (46)
is nothing but the flux:

q

∮
A(r) · dl = qΦ. (48)

But, again, this magnetic flux is acting from distance since there are no magnetic field inside the ring! The same
situation as the one where the Aharonov-Bohm phase appears. From Eqs. (47) and (48) we reach an another interesting
conclusion that the flux Φ has to be quantized as

Φ =
2πh̄

q
n =

h

q
n (49)

with n being any integers (0,1,2, · · · )!

FIG. 2: Experimentally measured trapped flux threaded in a superconducting cylinder as a function of magnetic field, in which
the cylinder was cooled below the superconducting transition temperature [9].

In 1961 Deaver and Fairbank [9] as well as Doll and Nabauer [10] experimentally found that q is not the elementary
electron charge e but 2e (see Fig. 2)! These results reflect the fact that the electrons pairing up as the Cooper pairs
and being condensed in the ground state (BCS state) in the superconducting metals.
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