Berry phase and Dirac monopole

Koji Usami* (Dated: November 08, 2018)

We shall explore the similarity between the Lagrangian for a spin- $\frac{1}{2}$ in a magnetic field and that for a charged particle in a magnetic field encountered when we discussed the Aharonov-Bohm phase. We shall then discover the Berry connection, the Berry curvature, and the Berry phase from the former Lagrangian, which correspond to the vector potential, the magnetic field, and the Aharonov-Bohm phase, respectively, appeared from the latter Lagragian. It turns out that the Berry curvature describes the non-zero divergent field associated with a magnetic monopole, called the Dirac monopole. We shall then discuss the intimate relation between the Dirac monopole and quantization of spin.

BERRY CONNECTION, BERRY CURVATURE, AND BERRY PHASE

We found that the effective Lagrangian for the spin $-\frac{1}{2}$ in the magnetic field $\mathbf{B} = \begin{bmatrix} 0 \\ 0 \\ B \end{bmatrix}$ can be given by

$$\mathcal{L}(\phi, \dot{\phi}, \theta, \dot{\theta}) = \underbrace{\frac{1}{2} \gamma B \cos \theta}_{\text{potential energy}} + \underbrace{\frac{i}{2} (1 - \cos \theta) \dot{\phi}}_{\text{velocity dependent part}}, \tag{1}$$

This reminds us of the *imaginary-time* version of the Lagrangian for the charged particle in the vector potential A, that is,

$$\mathcal{L}(\boldsymbol{x}, \dot{\boldsymbol{x}}) = \underbrace{\frac{1}{2}m\dot{\boldsymbol{x}}^2}_{\text{kinetic energy}} - \underbrace{iq\boldsymbol{A}\cdot\dot{\boldsymbol{x}}}_{\text{velocity dependent part}}, \qquad (2)$$

since both Lagrangians contain the velocity-dependent imaginary parts. Let us take this analogy seriously and find the corresponding vector potential \mathbf{A} for the former.

To this end let us remember that the Euler-Lagrange equation followed from the Lagrangian Eq. (1) is

$$\dot{\boldsymbol{n}} = -\tilde{\gamma}\boldsymbol{n} \times \boldsymbol{B},\tag{3}$$

where the normalized magnetic moment $\boldsymbol{n} = \frac{\boldsymbol{m}}{m_0}$ (\boldsymbol{m} : magnetic moment; $m_0 = \frac{\mathrm{g}\mu_{\mathrm{B}}}{2}$) can be written in terms of two Euler angles as

$$\boldsymbol{n} = \begin{bmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{bmatrix}, \tag{4}$$

with and the spherical orthonormal system:

$$\mathbf{e}_{r} = \begin{bmatrix} \sin\theta\cos\phi \\ \sin\theta\sin\phi \\ \cos\theta \end{bmatrix} \tag{5}$$

$$e_{r} = \begin{bmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{bmatrix}$$

$$e_{\theta} = \begin{bmatrix} \cos \theta \cos \phi \\ \cos \theta \sin \phi \\ -\sin \theta \end{bmatrix}$$

$$(5)$$

$$\mathbf{e}_{\phi} = \begin{bmatrix} -\sin\phi \\ \cos\phi \\ 0 \end{bmatrix}. \tag{7}$$

^{*}Electronic address: usami@gc.rcast.u-tokyo.ac.ip

Thus, we can consider

$$\dot{\mathbf{R}} = \frac{1}{2}\dot{\mathbf{n}} = \frac{1}{2} \left(\dot{\theta} \mathbf{e}_{\theta} + \sin \theta \dot{\phi} \mathbf{e}_{\phi} \right) = \frac{1}{2} \begin{bmatrix} 0 \\ \dot{\theta} \\ \sin \theta \dot{\phi} \end{bmatrix}, \tag{8}$$

as the more proper velocity for the spin moving on a sphere with radius of $\frac{1}{2}$. The velocity-dependent imaginary part of the Lagrangian $\mathcal{L}(\phi, \dot{\phi}, \theta, \dot{\theta})$ in Eq. (1) can thus be rewitten in a very similar way as the cooresponding part of Eq. (2) as

$$\mathcal{L}_B(\phi, \dot{\phi}, \theta, \dot{\theta}) = i\mathbf{A}_{\uparrow} \cdot \dot{\mathbf{R}},\tag{9}$$

where we discover the vector potential like quantity A_{\uparrow} , which reads

$$\mathbf{A}_{\uparrow} = \begin{bmatrix} 0 \\ 0 \\ \frac{1-\cos\theta}{\sin\theta} \end{bmatrix} \tag{10}$$

in the spherical coordinates. This vector potential is called the *Berry connection* in the literature [1]. The subscript \uparrow emphasizes the fact that the Berry connection stems from the *state* $|\uparrow\rangle$, which we shall see more later on.

The Berry phase action can thus be written in three different ways:

$$S_{\text{top}}[\phi, \theta] = -\int_{0}^{\beta} d\tau \left\langle \frac{\partial}{\partial \tau} g \middle| g \right\rangle \tag{11}$$

$$= \frac{i}{2} \int_0^\beta d\tau \left(1 - \cos\theta\right) \dot{\phi} \tag{12}$$

$$= i \int_0^\beta d\tau \mathbf{A}_\uparrow \cdot \dot{\mathbf{R}}. \tag{13}$$

Now we shall find the another expression of the Berry connection A_{\uparrow} . First, notice that

$$\frac{\partial}{\partial \tau} \langle g | g \rangle = \left\langle \frac{\partial}{\partial \tau} g \middle| g \right\rangle + \left\langle g \middle| \frac{\partial}{\partial \tau} g \right\rangle = 0 \tag{14}$$

and thus

$$\left\langle \frac{\partial}{\partial \tau} g \middle| g \right\rangle = -\left\langle g \middle| \frac{\partial}{\partial \tau} g \right\rangle \tag{15}$$

and $\langle g | \frac{\partial}{\partial \tau} g \rangle$ is pure imaginary. Equation. (11) can thus be rewritten as

$$S_{\text{top}}[\phi, \theta] = \int_0^\beta d\tau \left\langle g \middle| \frac{\partial}{\partial \tau} g \right\rangle. \tag{16}$$

Next, notice $g(\tau)$, a function of τ , can also be viewed as $g(\mathbf{R}(\tau))$, a function of $\mathbf{R}(\tau)$, that is,

$$S_{\text{top}}[\phi, \theta] = \int_{0}^{\beta} d\tau \left\langle g(\mathbf{R}(\tau)) \middle| \frac{\partial}{\partial \mathbf{R}(\tau)} g(\mathbf{R}(\tau)) \right\rangle \dot{\mathbf{R}}(\tau). \tag{17}$$

Comparing this expression with Eq. (13) we find the more famous expression of the Berry connection:

$$\mathbf{A}_{\uparrow} = -i \left\langle g(\mathbf{R}) \middle| \frac{\partial}{\partial \mathbf{R}} \middle| g(\mathbf{R}) \right\rangle,$$
 (18)

which, from Eq. (15), is a real-valued quantity.

Let us find some more. Since the integration with respect to τ in Eq.(13) running from $\tau = 0$ to β is traded for the contour integration with respect to \mathbf{R} , the Berry phase action can be further modified to

$$S_{\text{top}}[\phi, \theta] = i \oint_{\mathcal{C}} \mathbf{A}_{\uparrow} \cdot d\mathbf{R}$$
$$= i \int_{\mathcal{A}} \underbrace{(\nabla \times \mathbf{A}_{\uparrow})}_{\mathbf{\Omega}_{\uparrow}} \cdot d\mathbf{S}, \tag{19}$$

using Stokes theorem, where $\int_{\mathcal{C}} d\mathbf{R}$ is the contour integral with respect to \mathbf{R} along the circle \mathcal{C} while $\int_{\mathcal{A}} d\mathbf{S}$ is the surface integral over the area \mathcal{A} bounded by the circle \mathcal{C} . Here,

$$\mathbf{\Omega}_{\uparrow} = \nabla \times \mathbf{A}_{\uparrow} \tag{20}$$

is like magnetic field and is called the Berry curvature in the literature [1].

Like a charged particle moving in a ring, which is threaded by a magnetic field B, acquires the Aharonov-Bohm phase, the magnetic moment moving on the sphere with the Berry curvature Ω_{\uparrow} acquires the Berry phase γ_{\uparrow} , which is defined by

$$\gamma_{\uparrow} = \oint_{\mathcal{C}} d\mathbf{R} \cdot \mathbf{A}_{\uparrow} = \int_{\mathcal{A}} d\mathbf{S} \cdot \mathbf{\Omega}_{\uparrow}. \tag{21}$$

We have thus the following correspondences:

vector potential : \mathbf{A} \Leftrightarrow Berry connection : \mathbf{A}_{\uparrow} magnetic field : $\mathbf{B} = \nabla \times \mathbf{A}$ \Leftrightarrow Berry curvature : $\mathbf{\Omega}_{\uparrow} = \nabla \times \mathbf{A}_{\uparrow}$. Aharonov – Bohm phase : γ \Leftrightarrow Berry phase : γ_{\uparrow}

II. DIRAC MONOPOLE

A. Dirac monopole [2]

Now let us explore the Berry connection A_{\uparrow} and the Berry curvature Ω_{\uparrow} a little bit more. According to the above argument, the Berry curvature Ω_{\uparrow} is like magnetic field. Then what kind of magnetic field? Taking rotation of A_{\uparrow} in the shperical coordinate system $(r = \frac{1}{2}, \theta, \phi)$ we have

$$\Omega_{\uparrow} = \nabla \times A_{\uparrow}
= \begin{bmatrix}
\frac{1}{\frac{1}{2}\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta A_{\phi}\right) - \frac{\partial}{\partial \phi} A_{\theta} \\
\frac{1}{\frac{1}{2}\sin\theta} \frac{\partial}{\partial \phi} A_{r} - \frac{1}{\frac{1}{2}} \frac{\partial}{\partial r} \left(\frac{1}{2} A_{\phi}\right) \\
\frac{1}{\frac{1}{2}} \frac{\partial}{\partial r} \left(\frac{1}{2} A_{\theta}\right) - \frac{1}{\frac{1}{2}} \frac{\partial}{\partial \theta} A_{r}
\end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}
= 2e_{r}.$$
(22)

This is the magnetic field for the magnetic monopole! This monopole is called the Dirac monopole in some literature [3]. The strange point of the Dirac monopole is that the divergence of its field is not zero. We can see this immediately from Eq. (22). This suggests that the Berry connection A_{\uparrow} should be ill-behaved since $\nabla \cdot (\nabla \times A_{\uparrow}) \neq 0$. This is indeed true. $A_{\phi} = \frac{1-\cos\theta}{\sin\theta}$ is singular at $\theta = \pi$ as seen in Fig. (1).

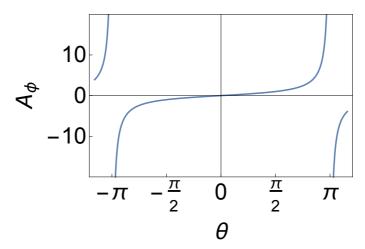


FIG. 1: ϕ -component of Berry connection A_{\uparrow} , A_{ϕ} , as a function of θ .

We could partly remedy this situation by using the other Berry connection, for instance,

$$\mathbf{A}_{\downarrow} = \begin{bmatrix} 0\\0\\-\frac{1+\cos\theta}{\sin\theta} \end{bmatrix},\tag{23}$$

which can be obtained by the following gauge transformation:

$$\mathbf{A}_{\downarrow} = \mathbf{A}_{\uparrow} - \nabla \phi = \begin{bmatrix} 0 \\ 0 \\ \frac{1 - \cos \theta}{\sin \theta} \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\frac{1}{\alpha} \sin \theta} \end{bmatrix}. \tag{24}$$

Like vector potentials, the Berry connection is thus gauge-dependent. The gauge-transformed Berry connection A_{\downarrow} in Eq. (23) does not have singularity at $\theta = \pi$, but does have it at $\theta = 0$ as seen in Fig. (2). Note that the Berry connection A_{\downarrow} produces exactly the same Berry curvature Ω_{\downarrow} as Ω_{\uparrow} in Eq. (22), thus, like magnetic field, the Berry connection is gauge-independent.

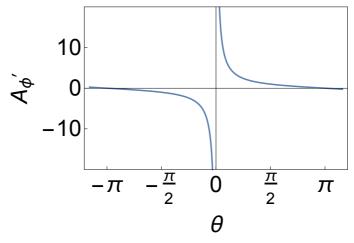


FIG. 2: ϕ -component of Berry connection A_{\downarrow} , A'_{ϕ} , as a function of θ .

What about the Berry phase γ_{\uparrow} in Eq. (21)? Does it change by the gauge transformation Eq. (24)? Let us see the interesting answer to this question. Remember that R in Eq. (21) traverses the circle C on the sphere of radius $\frac{1}{2}$. Let us suppose the area A enclosed by C is $A_{C,\uparrow}$ when the area contains the north pole and $A_{C,\downarrow}$ when the area contains the south pole. The Berry phase can then be given by this area $A_{C,\uparrow}$ as

$$\gamma_{\uparrow} = \int_{A_{\uparrow}} d\mathbf{S} \cdot \mathbf{\Omega}_{\uparrow} = \int_{A_{\uparrow}} d\mathbf{S} \cdot 2\mathbf{e}_r = 2A_{\mathcal{C},\uparrow}$$
 (25)

while it can be given by $A_{\mathcal{C},\downarrow}$ as

$$\gamma_{\downarrow} = \int_{\mathcal{A}_{\downarrow}} d\mathbf{S} \cdot \mathbf{\Omega}_{\downarrow} = \int_{\mathcal{A}_{\downarrow}} d\mathbf{S} \cdot 2\mathbf{e}_{r} = -2A_{\mathcal{C},\downarrow}, \tag{26}$$

where the minus sign comes from the fact that the area here has the *orientation* with respect to the circle C. Are these two expressions different? To see this, let us calculate the difference:

$$\gamma_{\uparrow} - \gamma_{\downarrow} = 2A_{\mathcal{C},\uparrow} + 2A_{\mathcal{C},\downarrow} = 2$$

$$\underbrace{4\pi \left(\frac{1}{2}\right)^{2}}_{\text{sphere surface of radius}\frac{1}{2}} = 2\pi. \tag{27}$$

Thus the answer is no in a sense of modulo $2\pi!$ We thus say that $\gamma_{\uparrow} = \gamma_{\downarrow}$ and the Berry phase is gauge-independent!

B. Quntization of spin [2]

We can repeat the similar arguments for the general spin-S cases to reach the conclusion that the Berry phase aquired by the spin-S moving on sphere of radius S is

$$\gamma_{\uparrow} = \frac{1}{S} A_{\mathcal{C},\uparrow} \tag{28}$$

for the calcuration based on the area contains the north pole while

$$\gamma_{\downarrow} = -\frac{1}{S} A_{\mathcal{C},\downarrow} \tag{29}$$

for that based on the area contains the south pole. The difference is thus given by

$$\gamma_{\uparrow} - \gamma_{\downarrow} = \frac{1}{S} A_{\mathcal{C},\uparrow} + \frac{1}{S} A_{\mathcal{C},\downarrow} = \frac{1}{S} \underbrace{4\pi S^2}_{\text{sphere surface of radius}S} = 4\pi S.$$
 (30)

We can thus draw a very interesting conclusion that as far as the spin is quantized as $\frac{1}{2}, 1, \frac{3}{2}, \cdots$, the Berry phase can be single-valued (modulo 2π) and gauge-independent. It also seen that the minimum possible spin is not 1 but $\frac{1}{2}$!

This in turn means that the *spin has to be quantized if we require that the Berry phase is single-valued!* We can see (again) the close link between the topological phase and quantized quantity, that is,

$$\begin{array}{ll} {\rm Aharonov-Bohm~phase}:\gamma \iff {\rm Berry~phase}:\gamma_\uparrow=\gamma_\downarrow\\ {\rm flux~quantization} \iff {\rm spin~quantization} \end{array}.$$

- [1] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
- [2] A. Altland and B. D. Simons, Condensed Matter Field Theory, 2nd ed. (Cambridge University Press, Cambridge, 2010).
- [3] J. J. Sakurai, Modern Quantum Mechanics, revised ed. (Addison-Wesley, Reading, MA, 1994).