Thouless pumping

Koji Usami*
(Dated: November 12, 2018)
We shall find that the Berry phase appears when a quantum state is modified by adiabatic changes of Hamiltonian. This sets the stage to explore the yet another interesting quantization phenomenon, the Thouless pumping. Here the parameter space is torus and spaned by the time t and the wave number k, both of which are periodic.

I. BERRY PHASE AND ADIABATIC CHANGES OF A QUANTUM STATE [1-3]

So far we investigated the Berry phase with path integral method, which basically means that we treated the inherently quantum-mechanical electron spin as the classical megnetic moment, $\boldsymbol{n}=\frac{\boldsymbol{m}}{m_{0}}=\left[\begin{array}{c}\sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta\end{array}\right]$. Now, we shall re-discover the same Berry phase by analyzing the adiabatic changes of a quantum state $|\uparrow(t)\rangle$ which is one of the eigenstates of the spin.

A. Adiabatic changes of a quantum state

Let the time-varing Hamiltonian be

$$
\begin{equation*}
H(t)=\boldsymbol{m} \cdot \boldsymbol{B}(t)=\gamma \boldsymbol{\sigma} \cdot \boldsymbol{B}(t) \tag{1}
\end{equation*}
$$

Suppose that the magnetic field at $t=0$ is $\boldsymbol{B}(0)=B(0)\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ and the spin starts at $t=0$ in one of the eignestates

$$
|\uparrow(0)\rangle=\left[\begin{array}{l}
1 \tag{2}\\
0
\end{array}\right]
$$

with the energy $\epsilon_{\uparrow}(0)=\frac{1}{2} \gamma B(0)(\gamma<1)$. When the time-variation of the Hamiltonian $H(t)$ is abiabatic the spin state remains in the instantaneous eigenstate of $H(t)$, that is,

$$
|\uparrow(t)\rangle=\left[\begin{array}{c}
e^{-i \frac{\phi(t)}{2}} \cos \frac{\theta(t)}{2} \tag{3}\\
-i e^{i \frac{\phi(t)}{2}} \sin \frac{\theta(t)}{2}
\end{array}\right]
$$

with the energy $\epsilon_{\uparrow}(t)=\frac{1}{2} \gamma B(t)$. Here, at t the magnetic field is assumed to be $\boldsymbol{B}(t)=B(t)\left[\begin{array}{c}\sin \theta(t) \sin \phi(t) \\ \sin \theta(t) \cos \phi(t) \\ \cos \theta(t)\end{array}\right]$.
Now suppose that, at the end of the evolution $t=T$, the Hamiltonian returns to the original one, that is, $H(T)=$ $H(0)$ and thus the state must come back to the original state with some phase factor, that is,

$$
\begin{equation*}
|\uparrow(T)\rangle=e^{-i \Phi(T)}|\uparrow(0)\rangle \tag{4}
\end{equation*}
$$

We shall see that the phase can be written as [4]

$$
\begin{equation*}
\Phi(T)=\underbrace{\Phi(0)}_{\text {initial phase }}+\underbrace{\frac{1}{\hbar} \int_{0}^{T} d t \epsilon_{\uparrow}(t)}_{\text {dynamical phase }}+\underbrace{\gamma_{\uparrow}}_{\text {Berry phase }} \tag{5}
\end{equation*}
$$

[^0]The starting point is the time-dependent Schrödinger equation:

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H(t)|\psi(t)\rangle \tag{6}
\end{equation*}
$$

where the wave function $|\psi(t)\rangle$ can be assumed to be the instantaneous eigenstate $|\uparrow(t)\rangle$ with some phase factor, that is,

$$
\begin{equation*}
|\psi(t)\rangle=e^{-i \Phi(t)}|\uparrow(t)\rangle \tag{7}
\end{equation*}
$$

since $|\psi(t)\rangle$ changes adiabatically from $|\uparrow(0)\rangle$ to $|\uparrow(T)\rangle$ in a course of time evolution. This adiabatic approximation is essentially a projection operation, by which the state $|\psi(t)\rangle$ is restricted onto the one of the eigenstates $|\uparrow(t)\rangle[1]$. Plugging this form of wave function into Eq. (6) and operate $\langle\uparrow(t)|$ from the left we have

$$
\begin{equation*}
\hbar \frac{\partial \Phi(t)}{\partial t}+i \hbar\langle\uparrow(t)| \frac{\partial}{\partial t}|\uparrow(t)\rangle=\epsilon_{\uparrow}(t) \tag{8}
\end{equation*}
$$

By integrating both sides with respenct to t from 0 to T we have

$$
\begin{equation*}
\hbar(\Phi(T)-\Phi(0))+\hbar \int_{0}^{T} d t i\langle\uparrow(t)| \frac{\partial}{\partial t}|\uparrow(t)\rangle=\int_{0}^{T} d t \epsilon_{\uparrow}(t) \tag{9}
\end{equation*}
$$

which indeed indicates Eq.(5) with the Berry phase [4]:

$$
\begin{align*}
\gamma_{\uparrow} & =-\int_{0}^{T} d t i\langle\uparrow(t)| \frac{\partial}{\partial t}|\uparrow(t)\rangle \\
& =\int_{0}^{T} d t\left(-i\langle\uparrow(\boldsymbol{R}(t))| \frac{\partial}{\partial \boldsymbol{R}(t)}|\uparrow(\boldsymbol{R}(t))\rangle\right) \dot{\boldsymbol{R}}(t) \\
& =\oint_{\mathrm{C}} d \boldsymbol{R} \cdot \underbrace{\left(-i\langle\uparrow(\boldsymbol{R})| \frac{\partial}{\partial \boldsymbol{R}}|\uparrow(\boldsymbol{R})\rangle\right)}_{\boldsymbol{A}_{\uparrow}: \text { Berry connection }} \\
& =\int_{\mathcal{A}} d \boldsymbol{S} \cdot \underbrace{}_{\boldsymbol{\Omega}_{\uparrow}: \underbrace{\left(\nabla \times \boldsymbol{A}_{\uparrow}\right)}_{\text {Berry curvature }}} \tag{10}
\end{align*}
$$

This establishes the close link between the Berry phase and adiabatic changes of the quantum state $|\uparrow(t)\rangle$. Note that γ_{\uparrow} does not depend on the velocity \boldsymbol{R} in this setting and stems from the geometry of the space where the eigenstates $|\uparrow(t)\rangle$ lives. Thus, the Berry phase is also called the geometric phase.

B. Calcution of Berry curvatures

Unlike the Berry connection, the Berry curvature and the Berry phase are gauge-independent and observable. Especially the Berry curvature can be evaluated locally at \boldsymbol{R}, that is, in the Euler angle representation, at (ϕ, θ). Let us explore several ways in which the Berry curvature Ω_{\uparrow} can be calculated. We know from the last lecture that

$$
\begin{align*}
\Omega_{\uparrow}(\phi, \theta) & =\nabla \times \boldsymbol{A}_{\uparrow}(\phi, \theta) \\
& =\nabla \times\left[\begin{array}{c}
0 \\
0 \\
\frac{1-\cos \theta}{\sin \theta}
\end{array}\right]==\left[\begin{array}{c}
\frac{1}{\frac{1}{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta\left(\frac{1-\cos \theta}{\sin \theta}\right)\right) \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=2 \boldsymbol{e}_{r} . \tag{11}
\end{align*}
$$

1. From spinor representation

The Berry connection $\boldsymbol{A}_{\uparrow}$ can be written in terms of spinor representation as

$$
\begin{align*}
\boldsymbol{A}_{\uparrow} & =-i\langle\uparrow(\boldsymbol{R})| \frac{\partial}{\partial \boldsymbol{R}}|\uparrow(\boldsymbol{R})\rangle \\
& =-i\left(\left[e^{-i \frac{\phi}{2}} \cos \frac{\theta}{2}, i e^{-i \frac{\phi}{2}} \sin \frac{\theta}{2}\right] \cdot\left(\nabla\left[\begin{array}{c}
e^{-i \frac{\phi}{2}} \cos \frac{\theta}{2} \\
-i e^{i \frac{\phi}{2}} \sin \frac{\theta}{2}
\end{array}\right]\right)\right) \\
& =-i\left([e ^ { - i \frac { \phi } { 2 } } \operatorname { c o s } \frac { \theta } { 2 } , i e ^ { - i \frac { \phi } { 2 } } \operatorname { s i n } \frac { \theta } { 2 }] \cdot \left(\begin{array}{c}
\left.\left.\frac{1}{\frac{1}{2}} \frac{\partial}{\partial \theta}\left[\begin{array}{c}
e^{-i \frac{\phi}{2}} \cos \frac{\theta}{2} \\
-i e^{i \frac{\phi}{2}} \sin \frac{\theta}{2}
\end{array}\right] \boldsymbol{e}_{\theta}+\frac{1}{\frac{1}{2} \sin \theta} \frac{\partial}{\partial \phi}\left[\begin{array}{c}
e^{-i \frac{\phi}{2}} \cos \frac{\theta}{2} \\
-i e^{i \frac{\phi}{2}} \sin \frac{\theta}{2}
\end{array}\right] \boldsymbol{e}_{\phi}\right)\right) \\
\\
\end{array}=-i\left(\left[e^{-i \frac{\phi}{2}} \cos \frac{\theta}{2}, i e^{-i \frac{\phi}{2}} \sin \frac{\theta}{2}\right] \cdot\left(\left[\begin{array}{c}
-e^{-i \frac{\phi}{2}} \sin \frac{\theta}{2} \\
-i e^{i \frac{\phi}{2}} \cos \frac{\theta}{2}
\end{array}\right] \boldsymbol{e}_{\theta}+\frac{1}{\sin \theta}\left[\begin{array}{c}
-i e^{-i \frac{\phi}{2}} \cos \frac{\theta}{2} \\
e^{i \frac{\phi}{2}} \sin \frac{\theta}{2}
\end{array}\right] \boldsymbol{e}_{\phi}\right)\right)\right.\right. \\
& =-i\left(\left(-\cos \frac{\theta}{2} \sin \frac{\theta}{2}+\sin \frac{\theta}{2} \cos \frac{\theta}{2}\right) \boldsymbol{e}_{\theta}+i \frac{1}{\sin \theta}\left(-\cos ^{2} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2}\right) \boldsymbol{e}_{\phi}\right) \\
& =-\frac{\cos \theta}{\sin \theta} \boldsymbol{e}_{\phi} .
\end{align*}
$$

With this Berry connection, we arrive at the same Berry curvature:

$$
\begin{align*}
\boldsymbol{\Omega}_{\uparrow}(\boldsymbol{R}) & =\nabla \times\left(-i\langle\uparrow(\boldsymbol{R})| \frac{\partial}{\partial \boldsymbol{R}}|\uparrow(\boldsymbol{R})\rangle\right) \\
& =\nabla \times\left[\begin{array}{c}
0 \\
0 \\
-\frac{\cos \theta}{\sin \theta}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\frac{1}{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta\left(-\frac{\cos \theta}{\sin \theta}\right)\right) \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=2 \boldsymbol{e}_{r} . \tag{13}
\end{align*}
$$

2. From first-order correction to the adiabatic eigenstates

From the vector identity

$$
\begin{equation*}
\nabla \times(f \nabla g)=\nabla f \times \nabla g \tag{14}
\end{equation*}
$$

the second expression in Eq. (13) can also be written as

$$
\begin{align*}
\boldsymbol{\Omega}_{\uparrow}(\boldsymbol{R}) & =\nabla \times(-i\langle\uparrow(\boldsymbol{R})| \nabla|\uparrow(\boldsymbol{R})\rangle) \\
& =-i\langle\nabla \uparrow(\boldsymbol{R})| \times|\nabla \uparrow(\boldsymbol{R})\rangle \\
& =-i\left\langle\frac{\partial}{\partial \boldsymbol{R}} \uparrow(\boldsymbol{R})\right| \times\left|\frac{\partial}{\partial \boldsymbol{R}} \uparrow(\boldsymbol{R})\right\rangle \tag{15}\\
& =-i \sum_{m=\uparrow, \downarrow}\left\langle\left.\frac{\partial}{\partial \boldsymbol{R}} \uparrow(\boldsymbol{R}) \right\rvert\, m(\boldsymbol{R})\right\rangle \times\left\langle m(\boldsymbol{R}) \left\lvert\, \frac{\partial}{\partial \boldsymbol{R}} \uparrow(\boldsymbol{R})\right.\right\rangle \\
& =-i\left\langle\left.\frac{\partial}{\partial \boldsymbol{R}} \uparrow(\boldsymbol{R}) \right\rvert\, \downarrow(\boldsymbol{R})\right\rangle \times\left\langle\downarrow(\boldsymbol{R}) \left\lvert\, \frac{\partial}{\partial \boldsymbol{R}} \uparrow(\boldsymbol{R})\right.\right\rangle \tag{16}
\end{align*}
$$

where last equality comes from

$$
\begin{equation*}
\left\langle\left.\frac{\partial}{\partial \boldsymbol{R}} \uparrow(\boldsymbol{R}) \right\rvert\, \uparrow(\boldsymbol{R})\right\rangle=-\left\langle\uparrow(\boldsymbol{R}) \left\lvert\, \frac{\partial}{\partial \boldsymbol{R}} \uparrow(\boldsymbol{R})\right.\right\rangle . \tag{17}
\end{equation*}
$$

This form allows us to explore the relation between the Berry courvature and degeneracy points. To see this relation, let us exploit the following relations:

$$
\begin{align*}
\left\langle m(\boldsymbol{R}) \left\lvert\, \frac{\partial}{\partial \boldsymbol{R}} \uparrow(\boldsymbol{R})\right.\right\rangle & =\frac{1}{\epsilon_{\uparrow}(\boldsymbol{R})-\epsilon_{m}(\boldsymbol{R})}\langle m(\boldsymbol{R})| \frac{\partial H(\boldsymbol{R})}{\partial \boldsymbol{R}}|\uparrow(\boldsymbol{R})\rangle \tag{18}\\
\left\langle\left.\frac{\partial}{\partial \boldsymbol{R}} \uparrow(\boldsymbol{R}) \right\rvert\, m(\boldsymbol{R})\right\rangle & =\frac{1}{\epsilon_{\uparrow}(\boldsymbol{R})-\epsilon_{m}(\boldsymbol{R})}\langle\uparrow(\boldsymbol{R})| \frac{\partial H(\boldsymbol{R})}{\partial \boldsymbol{R}}|m(\boldsymbol{R})\rangle \tag{19}
\end{align*}
$$

where $|m(\boldsymbol{R})\rangle$ and $\epsilon_{m}(\boldsymbol{R})$ are the eigenstates and the eigenvalues of the Hamiltonian $H(t)=H(\boldsymbol{R}(t))$ in Eq. (1). The relation can be obtained by differentiating the eigenequation

$$
\begin{equation*}
H(\boldsymbol{R})|m(\boldsymbol{R})\rangle=\epsilon_{m}(\boldsymbol{R})|m(\boldsymbol{R})\rangle \tag{20}
\end{equation*}
$$

by \boldsymbol{R}. With Eqs. (18) and (19), the Berry curvature Eq. (16) becomes

$$
\begin{align*}
\boldsymbol{\Omega}_{\uparrow}(\boldsymbol{R}) & =-i \sum_{m=\uparrow, \downarrow} \frac{1}{\left(\epsilon_{\uparrow}(\boldsymbol{R})-\epsilon_{m}(\boldsymbol{R})\right)^{2}}\langle\uparrow(\boldsymbol{R})| \frac{\partial H(\boldsymbol{R})}{\partial \boldsymbol{R}}|m(\boldsymbol{R})\rangle \times\langle m(\boldsymbol{R})| \frac{\partial H(\boldsymbol{R})}{\partial \boldsymbol{R}}|\uparrow(\boldsymbol{R})\rangle \\
& =-\frac{i}{\left(\epsilon_{\uparrow}(\boldsymbol{R})-\epsilon_{\downarrow}(\boldsymbol{R})\right)^{2}}\langle\uparrow(\boldsymbol{R})| \frac{\partial H(\boldsymbol{R})}{\partial \boldsymbol{R}}|\downarrow(\boldsymbol{R})\rangle \times\langle\downarrow(\boldsymbol{R})| \frac{\partial H(\boldsymbol{R})}{\partial \boldsymbol{R}}|\uparrow(\boldsymbol{R})\rangle \tag{21}
\end{align*}
$$

suggesting that when $\epsilon_{\uparrow}(\boldsymbol{R}) \sim \epsilon_{\downarrow}(\boldsymbol{R})$ the Berry curvature $\Omega_{\uparrow}(\boldsymbol{R})$ becomes large and $\Omega_{\uparrow}(\boldsymbol{R})$ becomes divergent at the degeracy point where $\epsilon_{\uparrow}(\boldsymbol{R})=\epsilon_{\downarrow}(\boldsymbol{R})$. The advantage of the last formula Eq. (21) is that there is no differentiation on the wave function.

II. THOULESS PUMPING [1]

Now we shall extend our interest to solid state physics and explore the Berry phase accompanying Bloch electron. The model Hamiltonian is one for a 1D electron in a slowly varing periodic potential

$$
\begin{equation*}
H(t)=\frac{p}{2 m}+V(x, t) \tag{22}
\end{equation*}
$$

where the potential $V(x, t)$ assumes the periodic boundary condition $V(x+a, t)=V(x, t)$ with a being the lattice constant. According to Bloch's theorem the instantaneous eigenstates can be given by the Bloch form:

$$
\begin{equation*}
\left|\psi_{n, k}(x, t)\right\rangle=e^{i k x}\left|u_{n, k}(x, t)\right\rangle \tag{23}
\end{equation*}
$$

with the twisted boundary conditions:

$$
\begin{equation*}
\left|\psi_{n, k}(x+a, t)\right\rangle=e^{i k a}\left|\psi_{n, k}(x, t)\right\rangle \tag{24}
\end{equation*}
$$

where n stands for the band index and k does for the wave number. To rectify the twisted boundary condition we can use the periodic part $\left|u_{n, k}(x, t)\right\rangle$ of the Bloch form Eq. (23) as the instantaneous eigenstates. This is basically a gauge-transformation. The boundary condition for $\left|u_{n, k}(x, t)\right\rangle$ is the ordinary one,

$$
\begin{equation*}
\left|u_{n, k}(x+a, t)\right\rangle=\left|u_{n, k}(x, t)\right\rangle, \tag{25}
\end{equation*}
$$

while the Hamiltonian Eq. (22) changes into k-dependent form

$$
\begin{equation*}
H(k, t)=e^{-i k x} H(t) e^{i k x}=\frac{1}{2 m}(p+\hbar k)^{2}+V(x, t), \tag{26}
\end{equation*}
$$

since

$$
\begin{align*}
e^{-i k x} p e^{i k x} & =e^{-i k x}\left(-i \hbar \frac{\partial}{\partial x}\right) e^{i k x} \\
& =\hbar k-i \hbar \frac{\partial}{\partial x}=\hbar k+p \tag{27}
\end{align*}
$$

The velocity of the electron can be given by

$$
\begin{equation*}
v=-\frac{i}{\hbar}[x, H] \tag{28}
\end{equation*}
$$

The velocity of the electron in a state of given k and band index n can then be obtained by

$$
\begin{align*}
v_{k, n}^{(0)} & \equiv\left\langle u_{k, n}\right| e^{-i k x} v e^{i k x}\left|u_{k, n}\right\rangle \\
& =-\frac{i}{\hbar}\left\langle u_{k, n}\right| e^{-i k x}[x, H] e^{i k x}\left|u_{k, n}\right\rangle \\
& =-\frac{i}{\hbar}\left\langle u_{k, n}\right|\left[x, e^{-i k x} H e^{i k x}\right]\left|u_{k, n}\right\rangle \\
& =-\frac{i}{\hbar}\left\langle u_{k, n}\right|\left[x, \frac{1}{2 m}\left((p+\hbar k)^{2}+V(x)\right)\right]\left|u_{k, n}\right\rangle \\
& =-\frac{i}{\hbar}\left\langle u_{k, n}\right|\left[x, \frac{1}{2 m}\left(\left(-i \hbar \frac{\partial}{\partial x}+\hbar k\right)^{2}+V(x)\right)\right]\left|u_{k, n}\right\rangle \\
& =\frac{1}{m}\left\langle u_{k, n}\right|(p+\hbar k)\left|u_{k, n}\right\rangle \\
& =\frac{1}{\hbar}\left\langle u_{k, n}\right| \frac{\partial H}{\partial k}\left|u_{k, n}\right\rangle \\
& =\frac{1}{\hbar} \frac{\partial \epsilon_{k, n}}{\partial k} . \tag{29}
\end{align*}
$$

Integrating over the Brilloin zone we have the zero total current:

$$
\begin{align*}
j_{0} & =-e \sum_{n} \int_{\mathrm{BZ}} \frac{d k}{2 \pi} v_{k, n}^{(0)} \\
& =-e \sum_{n} \frac{1}{\hbar} \int_{\mathrm{BZ}} \frac{d k}{2 \pi} \frac{\partial \epsilon_{k, n}}{\partial k} \\
& =-e \sum_{n} \frac{1}{h} \int_{\mathrm{BZ}} d \epsilon_{k, n}=0 . \tag{30}
\end{align*}
$$

So let us look at the first-order correction to the adiabatic eigenstates $\left|u_{k, n}\right\rangle$. The purtabation theory tells us that the first-order approximation of the adiabatic eigenstates can be given by

$$
\begin{equation*}
\left|u_{k, n}\right\rangle-i \hbar \sum_{n^{\prime}=n} \frac{\left|u_{k, n^{\prime}}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{k, n}}{\partial t}\right.\right\rangle}{\epsilon_{k, n}-\epsilon_{k, n^{\prime}}} . \tag{31}
\end{equation*}
$$

Thus the first-order correction to the velocity reads

$$
\begin{align*}
v_{k, n}^{(1)} & \equiv \frac{1}{\hbar}\left\langle u_{k, n}\right| \frac{\partial H}{\partial k}\left|\left(-i \hbar \sum_{n^{\prime}=n} \frac{\left|u_{k, n^{\prime}}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{k, n}}{\partial t}\right.\right\rangle}{\epsilon_{k, n}-\epsilon_{k, n^{\prime}}}\right)+\frac{1}{\hbar}\left(i \hbar \sum_{n^{\prime}=n} \frac{\left\langle\left.\frac{\partial u_{k, n}}{\partial t} \right\rvert\, u_{n^{\prime}, k}\right\rangle\left\langle u_{k, n^{\prime}}\right|}{\epsilon_{k, n}-\epsilon_{k, n^{\prime}}}\right)\right| \frac{\partial H}{\partial k}\left|u_{k, n}\right\rangle \\
& =-i \sum_{n=n^{\prime}} \frac{1}{\epsilon_{k, n}-\epsilon_{k, n^{\prime}}}\left(\left\langle u_{k, n}\right| \frac{\partial H}{\partial k}\left|u_{k, n^{\prime}}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{k, n}}{\partial t}\right.\right\rangle-\left\langle\left.\frac{\partial u_{k, n}}{\partial t} \right\rvert\, u_{n^{\prime}, k}\right\rangle\left\langle u_{k, n^{\prime}}\right| \frac{\partial H}{\partial k}\left|u_{k, n}\right\rangle\right) . \tag{32}
\end{align*}
$$

Now, let us exploit the similar relations as Eqs.(18) and (19):

$$
\begin{align*}
\left\langle u_{k, n^{\prime}} \left\lvert\, \frac{\partial u_{k, n}}{\partial k}\right.\right\rangle & =\frac{1}{\epsilon_{k, n}-\epsilon_{k, n^{\prime}}}\left\langle u_{k, n^{\prime}}\right| \frac{\partial H}{\partial k}\left|u_{k, n}\right\rangle \tag{33}\\
\left\langle\left.\frac{\partial u_{k, n}}{\partial k} \right\rvert\, u_{k, n^{\prime}}\right\rangle & =\frac{1}{\epsilon_{k, n}-\epsilon_{k, n^{\prime}}}\left\langle u_{k, n}\right| \frac{\partial H}{\partial k}\left|u_{k, n^{\prime}}\right\rangle \tag{34}
\end{align*}
$$

to get

$$
\begin{align*}
v_{k, n}^{(1)} & =-i \sum_{n=n^{\prime}}\left(\left\langle\left.\frac{\partial u_{k, n}}{\partial k} \right\rvert\, u_{k, n^{\prime}}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{k, n}}{\partial t}\right.\right\rangle-\left\langle\left.\frac{\partial u_{k, n}}{\partial t} \right\rvert\, u_{n^{\prime}, k}\right\rangle\left\langle u_{k, n^{\prime}} \left\lvert\, \frac{\partial u_{k, n}}{\partial k}\right.\right\rangle\right) \\
& =-i\left(\left\langle\left.\frac{\partial u_{k, n}}{\partial k} \right\rvert\, \frac{\partial u_{k, n}}{\partial t}\right\rangle-\left\langle\left.\frac{\partial u_{k, n}}{\partial t} \right\rvert\, \frac{\partial u_{k, n}}{\partial k}\right\rangle\right) . \tag{35}
\end{align*}
$$

Comparing the last form with the form of the Berry curvature in Eq. (15) we can recognize that $v_{k, n}^{(1)}$ is nothing but the Berry curvature:

$$
\begin{equation*}
v_{k, n}^{(1)}=\Omega_{k, n} . \tag{36}
\end{equation*}
$$

This Berry curvature measures the curvature of the space spaned by the time t and the wave number k. Here t assumes the periodic boundary conditions $t+T=t$ and k assumes the periodic boundary conditions $k+G=k$ where $G=\frac{2 \pi}{a}$, the parameter space is torus. Integrating over the Brilloin zone we have the Berry-curvature induced abiabatic current:

$$
\begin{equation*}
j_{1}=-e \sum_{n} \int_{\mathrm{BZ}} \frac{d k}{2 \pi} v_{k, n}^{(1)}=-e \sum_{n} \int_{\mathrm{BZ}} \frac{d k}{2 \pi} \Omega_{k, n} \tag{37}
\end{equation*}
$$

Now we shall see the number of charges transported by the n th-band adiabatic current per one-cycle of periodic time evolution is quantoized! To see this, let us integrate the $\frac{j_{1}}{-e}$ over the one cycle of periodic time evolution:

$$
\begin{equation*}
c_{n}=\int_{0}^{T} d t \int_{\mathrm{BZ}} \frac{d k}{2 \pi} \Omega_{k, n} \tag{38}
\end{equation*}
$$

The quantitiy $2 \pi c_{n}$ is nothing but the Berry phase of this problem since the value is obtained by integrating the Berry curvature over the surface of the parameter space. By rescaling $t \rightarrow x=\frac{t}{T}$ and $k \rightarrow y=\frac{k}{G}$, we have

$$
\begin{equation*}
c_{n}=\frac{1}{2 \pi} \int_{0}^{1} d x \int_{0}^{1} d y \Omega(x, y) \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega(x, y)=\frac{\Omega_{k, n}}{T G} \tag{40}
\end{equation*}
$$

FIG. 1: Path $(0,0) \rightarrow(1,0) \rightarrow(1,1) \rightarrow(0,1) \rightarrow(0,0)$ is used to evaluate the integral Eq. (41).
We can now use the Stokes theorem to obtain the line integral form of Eq. (39), that is,

$$
\begin{align*}
c_{n} & =\frac{1}{2 \pi} \oint_{\mathrm{C}} d l A(x, y) \\
& =\frac{1}{2 \pi}\left(\int_{0}^{1} d x A(x, 0)+\int_{0}^{1} d y A(1, y)+\int_{1}^{0} d x A(x, 1)+\int_{1}^{0} d y A(0, y)\right) \\
& =\frac{1}{2 \pi}\left(\int_{0}^{1} d x(A(x, 0)-A(x, 1))+\int_{0}^{1} d y(A(1, y)-A(0, y))\right) \tag{41}
\end{align*}
$$

where the line integral is along the path $(0,0) \rightarrow(1,0) \rightarrow(1,1) \rightarrow(0,1) \rightarrow(0,0)$ in Fig. 1. Here, the Berry connection $A(x, y)$ is given by

$$
\begin{equation*}
A(x, y)=-i\langle u(x, y)| \nabla|u(x, y)\rangle \tag{42}
\end{equation*}
$$

Here a question regarding the gauge choice arises since we are now interested in the gauge-dependent Berry connection $A(x, y)$. We employ the so-called periodic gauge [1]:

$$
\begin{align*}
|u(x, 1)\rangle & =e^{i \theta_{x}(x)}|u(x, 0)\rangle \tag{43}\\
|u(1, y)\rangle & =e^{i \theta_{y}(y)}|u(0, y)\rangle \tag{44}
\end{align*}
$$

Thus, we have

$$
\begin{align*}
A(x, 0)-A(x, 1) & =-i\langle u(x, 0)| \frac{\partial}{\partial x}|u(x, 0)\rangle+i\langle u(x, 1)| \frac{\partial}{\partial x}|u(x, 1)\rangle \\
& =-i\langle u(x, 0)| \frac{\partial}{\partial x}|u(x, 0)\rangle+i\langle u(x, 0)| e^{-i \theta_{x}(x)} \frac{\partial}{\partial x} e^{i \theta_{x}(x)}|u(x, 0)\rangle \\
& =-\frac{\partial \theta_{x}(x)}{\partial x} \tag{45}
\end{align*}
$$

and similarly

$$
\begin{equation*}
A(0, y)-A(1, y)=-\frac{\partial \theta_{y}(y)}{\partial y} \tag{46}
\end{equation*}
$$

Consequently, the line integral Eq. (41) becomes

$$
\begin{align*}
c_{n} & =-\frac{1}{2 \pi}\left(\int_{0}^{1} \frac{\partial \theta_{x}(x)}{\partial x} d x-\int_{0}^{1} d y \frac{\partial \theta_{y}(y)}{\partial y}\right) \\
& =-\frac{1}{2 \pi}\left(\int_{0}^{1} d \theta_{x}(x)-\int_{0}^{1} d \theta_{y}(y)\right) \\
& =-\frac{1}{2 \pi}\left(\theta_{x}(1)-\theta_{x}(0)-\theta_{y}(1)+\theta_{y}(0)\right) \tag{47}
\end{align*}
$$

On the other hand, the single-valuedness of the wave function requires

$$
\begin{equation*}
|u(0,0)\rangle=\exp \left[i\left(\theta_{x}(0)+\theta_{y}(1)-\theta_{x}(1)-\theta_{y}(0)\right)\right]|u(0,0)\rangle \tag{48}
\end{equation*}
$$

since the wave function acqires the phase $\theta_{x}(0)$ from $(0,0)$ to $(1,0), \theta_{y}(1)$ from $(1,0)$ to $(1,1),-\theta_{x}(1)$ from $(1,1)$ to $(0,1)$, and $-\theta_{y}(0)$. We thus conclude that

$$
\begin{equation*}
\theta_{x}(0)+\theta_{y}(1)-\theta_{x}(1)-\theta_{y}(0)=2 \pi Z \tag{49}
\end{equation*}
$$

where Z is integer, and the line integral Eq. (47) becomes

$$
\begin{equation*}
c_{n}=Z \tag{50}
\end{equation*}
$$

This proves the initial statement that the number of charges transported by the n th-band adiabatic current per onecycle of periodic time evolution is quantized. This kind of quantized charge transport is called Thouless pumping [5].
[1] D. Xiao, M. -C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
[2] A. Altland and B. D. Simons, Condensed Matter Field Theory, 2nd ed. (Cambridge University Press, Cambridge, 2010).
[3] J. J. Sakurai, Modern Quantum Mechanics, revised ed. (Addison-Wesley, Reading, MA, 1994).
[4] M. V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).
[5] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).

[^0]: *Electronic address: usami@qc.rcast.u-tokyo.ac.jp

