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Through these problems, we explore the quantum Hall effect for a 2D noninteracting electrons.

I. ANOMALOUS VELOCITY

Let us consider a non-interacting elecrron in a 2D crystal laying xy-plane under the perturbation of a weak and
uniform electric field E also laying xy-plane. The uniform field E leads to the linearly changing electrostatic potential
ϕ(x, y), which breaks the translational symmetry of the crystal. To exploit the Bloch’s theorem for the original
Hamiltonian without electric field E,

H0 =
1

2m
p2 + V (x, y), (1)

the electric field can be thought of appearing through the uniform but time-dependent vector potential A(t) with

E = −Ȧ(t). (2)

Then the Hamiltonian (1) is modified into

H(t) =
1

2m
(p+ eA(t))

2
+ V (x, y), (3)

where m is the mass, e is the charge, p is the canonical momentum of the electron. Here, V (r) is the periodic potential
for the electron created by the crystal.
Since the original Hamiltonian (1) possesses the translational symmetry, introducing the crystal momentum q the

instantaneous eigenstates for H0 can be given by the Bloch form

|ψn,q(r)⟩ = eiq·r|un,q(r)⟩. (4)

Now further introducing the gauge-invariant crystal momentum,

k = q +
e

h̄
A(t) (5)

the instantaneous eigenstates for H(t) can be similarly given by the Bloch form

|ψn,k(r)⟩ = eik·r|un,k(r)⟩. (6)

Since A(t) preserves the translational symmetry, the crystal momentum q is a constant of motion and satisfy

q̇ = 0. (7)

From Eqs. (2) and (5) and we have

k̇ = − e

h̄
E. (8)
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Problem 1� �
By following the similar argument we used in the discussion of Thouless pumping [4] and utilizing Eq. (8) show
that the velocity of the electron in the eigenstate labeled by k can be given by

v
n,k =

∂ϵ
n,k

h̄∂k
− e

h̄

(
E × Ω

n,k

)
︸ ︷︷ ︸

v(1)

n,k

, (9)

where the eigen energy ϵn,k is given by

⟨u
n,k|e

−ik·rH0e
ik·r|u

n,k⟩ = ⟨u
n,k|ϵn,k|un,k⟩, (10)

and the Berry curvature Ω
n,k of the nth band is given by

Ω
n,k = i


⟨

∂u
n,k

∂kx

∣∣∣∣⟨
∂u

n,k
∂ky
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0

×


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⟩
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0

 =


0
0

i

⟨
∂u

n,k
∂kx

∣∣∣∣∂un,k
∂ky

⟩
−
⟨

∂u
n,k

∂ky

∣∣∣∣∂un,k
∂kx

⟩
 . (11)

For hints, please refer to Ref. [1].� �
The second term in Eq. (9), v

(1)

n,k
, is transverse to the electric field E and is called anomalous velocity, which is

responsible for the quantum Hall effect as shown in the next section.

II. THE QUANTUM HALL EFFECT

The Hall current j1 perpendicular to E, which results from the second term in the velocity Eq. (9), can be expressed
as

j1 = −e
∑
n

∫
MBZ

dk

(2π)
2v

(1)

n,k
(12)

= −E e2

h̄

∑
n

∫
MBZ

dk

(2π)
2Ωn,k︸ ︷︷ ︸

σxy

(13)

where the integration is over the so-called magnetic Brillouin zone (MBZ) [1–3]. Since
∑

n

∫
MBZ

dk
2π Ωn,k can be shown

to have some integer value i [1–3], the Hall conductivity σxy in Eq. (13) can be written by the simple form

σxy =
e2

h
i (14)

and thus be seen to be quantized in units of e2

h .
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Problem 2� �
In 1980, von Klitzing, Dorda, and Pepper reported [5] an experiment which measured the quantized Hall resistance
of the value

RH = 6453.17± 0.02 Ω. (15)

How can this precise quantized value of the Hall resistance be interpreted in the light of Eq. (14)? How is this
value related to the fine structure constant α ≈ 1

137?� �
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