Thouless pumping

Koji Usami*
(Dated: October 10, 2019)
We shall find that the Berry phase appears when a quantum state undergoes an adiabatic evolution with a time-dependent Hamiltonian. This sets the stage to explore the yet another interesting quantization phenomenon, the Thouless pumping. Here the parameter space is torus and spaned by the time t and the wave number k, both of which are periodic.

I. BERRY PHASE AND ADIABATIC CHANGES OF A QUANTUM STATE [1-4]

So far we investigated the Berry phase with path integral method, which basically means that we treated the inherently quantum-mechanical electron spin as the classical megnetic moment, $\boldsymbol{n}=\frac{\boldsymbol{m}}{m_{0}}=\left[\begin{array}{c}\sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta\end{array}\right]$. Now, we shall revisit the Berry phase by analyzing the adiabatic evolution of a quantum state $|\uparrow(t)\rangle$, which is the lowest energy eigenstate of a time-dependent Hamiltonian $H(t)$.

A. Adiabatic changes of a quantum state

Let the time-dependent Hamiltonian be

$$
\begin{equation*}
H(t)=-\boldsymbol{m} \cdot \boldsymbol{B}(t)=\hbar \gamma_{s} \boldsymbol{\sigma} \cdot \boldsymbol{B}(t) \tag{1}
\end{equation*}
$$

Suppose that the magnetic field at $t=0$ is $\boldsymbol{B}(0)=B(0)\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ and the spin starts at $t=0$ in one of the eignestates

$$
\underbrace{|\uparrow(0)\rangle}_{\text {for magnetic moment }}=\underbrace{|\Downarrow(0)\rangle}_{\text {for spin }}=\left[\begin{array}{l}
0 \tag{2}\\
1
\end{array}\right]
$$

with the energy $\epsilon_{\uparrow}(0)=\epsilon_{\Downarrow}(0)=-\frac{1}{2} \hbar \gamma_{s} B(0)$. When the time-variation of the Hamiltonian $H(t)$ is abiabatic the spin state remains in the instantaneous eigenstate of $H(t)$, that is,

$$
|\uparrow(t)\rangle=|\Downarrow(t)\rangle=\left[\begin{array}{c}
-e^{-i \frac{\phi(t)}{2}} \sin \frac{\theta(t)}{2} \tag{3}\\
e^{i \frac{\phi(t)}{2}} \cos \frac{\theta(t)}{2}
\end{array}\right],
$$

with the energy $\epsilon_{\uparrow}(t)=\epsilon_{\Downarrow}(t)=-\frac{1}{2} \hbar \gamma_{s} B(t)$. Here, at t the magnetic field is assumed to be

$$
\boldsymbol{B}(t)=B(t)\left[\begin{array}{c}
\sin \theta(t) \sin \phi(t) \tag{4}\\
\sin \theta(t) \cos \phi(t) \\
\cos \theta(t)
\end{array}\right] .
$$

Now suppose that, at the end of the evolution $t=T$, the Hamiltonian returns to the original one, that is, $H(T)=H(0)$ and thus the state must come back to the original state with some phase factor, that is,

$$
\begin{equation*}
|\uparrow(T)\rangle=e^{-i \Phi(T)}|\uparrow(0)\rangle . \tag{5}
\end{equation*}
$$

We shall see that the phase can be written as [5]

$$
\begin{equation*}
\Phi(T)=\underbrace{\Phi(0)}_{\text {initial phase }}+\underbrace{\frac{1}{\hbar} \int_{0}^{T} d t \epsilon_{\uparrow}(t)}_{\text {dynamical phase }}-\underbrace{\gamma_{\uparrow}}_{\text {Berry phase }} \tag{6}
\end{equation*}
$$

[^0]The starting point is the time-dependent Schrödinger equation:

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H(t)|\psi(t)\rangle \tag{7}
\end{equation*}
$$

where the wave function $|\psi(t)\rangle$ can be assumed to be the instantaneous eigenstate $|\uparrow(t)\rangle$ with some phase factor, that is,

$$
\begin{equation*}
|\psi(t)\rangle=e^{-i \Phi(t)}|\uparrow(t)\rangle \tag{8}
\end{equation*}
$$

since $|\psi(t)\rangle$ changes adiabatically from $|\uparrow(0)\rangle$ to $|\uparrow(T)\rangle$ in a course of time evolution. This adiabatic approximation is essentially equivalent to performing a projection operation on the state $|\psi(t)\rangle$ to restrict it to the eigenstates $|\uparrow(t)\rangle$ [1]. Plugging this form of wave function into Eq. (7) and operate $\langle\uparrow(t)|$ from the left we have

$$
\begin{equation*}
\hbar \frac{\partial \Phi(t)}{\partial t}+i \hbar\langle\uparrow(t)| \frac{\partial}{\partial t}|\uparrow(t)\rangle=\epsilon_{\uparrow}(t) \tag{9}
\end{equation*}
$$

By integrating both sides with respect to t from 0 to T we have

$$
\begin{equation*}
\hbar(\Phi(T)-\Phi(0))+\hbar \int_{0}^{T} d t i\langle\uparrow(t)| \frac{\partial}{\partial t}|\uparrow(t)\rangle=\int_{0}^{T} d t \epsilon_{\uparrow}(t) \tag{10}
\end{equation*}
$$

which indeed indicates Eq.(6) with the Berry phase [5]:

$$
\begin{align*}
\gamma_{\uparrow} & =\int_{0}^{T} d t i\langle\uparrow(t)| \frac{\partial}{\partial t}|\uparrow(t)\rangle \\
& =\int_{0}^{T} d t\left(i\langle\uparrow(\boldsymbol{\sigma}(t))| \frac{\partial}{\partial \boldsymbol{\sigma}(t)}|\uparrow(\boldsymbol{\sigma}(t))\rangle\right) \dot{\boldsymbol{\sigma}}(t) \\
& =\oint_{\mathrm{C}} d \boldsymbol{\sigma} \cdot \underbrace{\left(i\langle\uparrow(\boldsymbol{\sigma})| \frac{\partial}{\partial \boldsymbol{\sigma}}|\uparrow(\boldsymbol{\sigma})\rangle\right)}_{\boldsymbol{A}_{\uparrow}: \text { Berry connection }} \\
& =\int_{\mathcal{A}} d \boldsymbol{S} \cdot \underbrace{\left(\boldsymbol{\nabla} \times \boldsymbol{A}_{\uparrow}\right)}_{\boldsymbol{\Omega}_{\uparrow}: \text { Berry curvature }} \tag{11}
\end{align*}
$$

This establishes the close link between the Berry phase and adiabatic evolution of the quantum state $|\uparrow(t)\rangle$. Note that γ_{\uparrow} does not depend on the velocity $\dot{\boldsymbol{\sigma}}$ in this setting and stems from the geometry of the space where the eigenstates $|\uparrow(t)\rangle$ lives. Thus, the Berry phase is also called the geometric phase.

B. Calcution of Berry curvatures

Unlike the Berry connection, the Berry curvature and the Berry phase are gauge-independent and observable. Especially the Berry curvature can be evaluated locally at $\boldsymbol{\sigma}$, that is, in the Euler angle representation, at (ϕ, θ). Let us explore several ways in which the Berry curvature Ω_{\uparrow} can be calculated.

1. From Euler angle representation

We know from the last lecture that

$$
\begin{align*}
\Omega_{\uparrow}(\phi, \theta) & =\boldsymbol{\nabla} \times \boldsymbol{A}_{\uparrow}(\phi, \theta) \\
& =\boldsymbol{\nabla} \times\left[\begin{array}{c}
0 \\
0 \\
\frac{1-\cos \theta}{\sin \theta}
\end{array}\right]==\left[\begin{array}{c}
\frac{1}{\frac{1}{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta\left(\frac{1-\cos \theta}{\sin \theta}\right)\right) \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=2 \boldsymbol{e}_{r} . \tag{12}
\end{align*}
$$

2. From spinor representation

The Berry connection $\boldsymbol{A}_{\uparrow}$ can also be written in terms of spinor representation as

$$
\left.\left.\left.\begin{array}{rl}
\boldsymbol{A}_{\uparrow} \equiv \boldsymbol{A}_{\Downarrow} & =i\langle\uparrow(\boldsymbol{\sigma})| \frac{\partial}{\partial \boldsymbol{\sigma}}|\uparrow(\boldsymbol{\sigma})\rangle \\
& =i\langle\Downarrow(\boldsymbol{\sigma})| \frac{\partial}{\partial \boldsymbol{\sigma}}|\Downarrow(\boldsymbol{\sigma})\rangle \\
& =i\left(\left[-e^{i \frac{\phi}{2}} \sin \frac{\theta}{2}, e^{-i \frac{\phi}{2}} \cos \frac{\theta}{2}\right] \cdot\left(\boldsymbol{\nabla}\left[\begin{array}{c}
-e^{-i \frac{\phi}{2}} \sin \frac{\theta}{2} \\
e^{i \frac{\phi}{2}} \cos \frac{\theta}{2}
\end{array}\right]\right)\right) \\
& =i\left(\left[-e^{i \frac{\phi}{2}} \sin \frac{\theta}{2}, e^{-i \frac{\phi}{2}} \cos \frac{\theta}{2}\right] \cdot\left(\boldsymbol{e}_{\theta} \frac{1}{\frac{1}{2} \frac{\partial}{\partial \theta}}\left[\begin{array}{c}
-e^{-i \frac{\phi}{2}} \sin \frac{\theta}{2} \\
e^{i \frac{\phi}{2}} \cos \frac{\theta}{2}
\end{array}\right]+\boldsymbol{e}_{\phi} \frac{1}{\frac{1}{2} \sin \theta} \frac{\partial}{\partial \phi}\left[\begin{array}{c}
-e^{-i \frac{\phi}{2}} \sin \frac{\theta}{2} \\
e^{i \frac{\phi}{2}} \cos \frac{\theta}{2}
\end{array}\right]\right)\right) \\
& =i\left([- e ^ { i \frac { \phi } { 2 } } \operatorname { s i n } \frac { \theta } { 2 } , e ^ { - i \frac { \phi } { 2 } } \operatorname { c o s } \frac { \theta } { 2 }] \cdot \left(\left[\begin{array}{c}
-e^{-i \frac{\phi}{2}} \cos \frac{\theta}{2} \\
-e^{i \frac{\phi}{2}} \sin \frac{\theta}{2}
\end{array}\right] \boldsymbol{e}_{\theta}+\frac{1}{\sin \theta}\left[i e^{-i \frac{\phi}{2}} \sin \frac{\theta}{2}\right] e^{i \frac{\phi}{2}} \cos \frac{\theta}{2}\right.\right.
\end{array}\right]\right)\right)
$$

With this Berry connection, we arrive at the same Berry curvature:

$$
\begin{align*}
\boldsymbol{\Omega}_{\uparrow}(\boldsymbol{\sigma}) & =\boldsymbol{\nabla} \times \boldsymbol{A}_{\uparrow} \\
& =\boldsymbol{\nabla} \times\left(i\langle\uparrow(\boldsymbol{\sigma})| \frac{\partial}{\partial \boldsymbol{\sigma}}|\uparrow(\boldsymbol{\sigma})\rangle\right) \\
& =\boldsymbol{\nabla} \times\left[\begin{array}{c}
0 \\
0 \\
-\frac{\cos \theta}{\sin \theta}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\frac{1}{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta\left(-\frac{\cos \theta}{\sin \theta}\right)\right) \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=2 \boldsymbol{e}_{r} . \tag{14}
\end{align*}
$$

3. From first-order correction to the adiabatic eigenstates

From the vector identity

$$
\begin{equation*}
\boldsymbol{\nabla} \times(f \nabla g)=\nabla f \times \nabla g \tag{15}
\end{equation*}
$$

the second expression in Eq. (14) can also be written as

$$
\begin{align*}
\boldsymbol{\Omega}_{\uparrow}(\boldsymbol{\sigma}) & =\boldsymbol{\nabla} \times(i\langle\uparrow(\boldsymbol{\sigma})| \boldsymbol{\nabla}|\uparrow(\boldsymbol{\sigma})\rangle) \\
& =i\langle\boldsymbol{\nabla} \uparrow(\boldsymbol{\sigma})| \times|\boldsymbol{\nabla} \uparrow(\boldsymbol{\sigma})\rangle \\
& =i\left\langle\frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma})\right| \times\left|\frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma})\right\rangle \\
& =i \sum_{m=\uparrow, \downarrow}\left\langle\left.\frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma}) \right\rvert\, m(\boldsymbol{\sigma})\right\rangle \times\left\langle m(\boldsymbol{\sigma}) \left\lvert\, \frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma})\right.\right\rangle \tag{16}\\
& =i\left\langle\left.\frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma}) \right\rvert\, \downarrow(\boldsymbol{\sigma})\right\rangle \times\left\langle\downarrow(\boldsymbol{\sigma}) \left\lvert\, \frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma})\right.\right\rangle, \tag{17}
\end{align*}
$$

where last equality comes from the fact that

$$
\begin{equation*}
\left\langle\left.\frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma}) \right\rvert\, \uparrow(\boldsymbol{\sigma})\right\rangle=-\left\langle\uparrow(\boldsymbol{\sigma}) \left\lvert\, \frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma})\right.\right\rangle . \tag{18}
\end{equation*}
$$

This form allows us to explore the relation between the Berry courvature and degeneracy points. To see this relation, let us exploit the following relations:

$$
\begin{align*}
\left\langle\downarrow(\boldsymbol{\sigma}) \left\lvert\, \frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma})\right.\right\rangle & =\frac{1}{\epsilon_{\uparrow}(\boldsymbol{\sigma})-\epsilon_{\downarrow}(\boldsymbol{\sigma})}\langle\downarrow(\boldsymbol{\sigma})| \frac{\partial H(\boldsymbol{\sigma})}{\partial \boldsymbol{\sigma}}|\uparrow(\boldsymbol{\sigma})\rangle \tag{19}\\
\left\langle\left.\frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma}) \right\rvert\, \downarrow(\boldsymbol{\sigma})\right\rangle & =\frac{1}{\epsilon_{\uparrow}(\boldsymbol{\sigma})-\epsilon_{\downarrow}(\boldsymbol{\sigma})}\langle\uparrow(\boldsymbol{\sigma})| \frac{\partial H(\boldsymbol{\sigma})}{\partial \boldsymbol{\sigma}}|\downarrow(\boldsymbol{\sigma})\rangle, \tag{20}
\end{align*}
$$

where $|\uparrow(\boldsymbol{\sigma})\rangle(|\downarrow(\boldsymbol{\sigma})\rangle)$ and $\epsilon_{\uparrow}(\boldsymbol{\sigma})\left(\epsilon_{\downarrow}(\boldsymbol{\sigma})\right)$ are the eigenstate and the eigenvalue of the Hamiltonian $H(t)=H(\boldsymbol{\sigma}(t))$ in Eq. (1). The relation can be obtained by differentiating the eigenequation

$$
\begin{equation*}
H(\boldsymbol{\sigma})|\uparrow(\boldsymbol{\sigma})\rangle=\epsilon_{\uparrow}(\boldsymbol{\sigma})|\uparrow(\boldsymbol{\sigma})\rangle \tag{21}
\end{equation*}
$$

by $\boldsymbol{\sigma}$ and then by projecting on the state $\langle\downarrow(\boldsymbol{\sigma})|$. With Eqs. (19) and (20), the Berry curvature Eq. (17) becomes

$$
\begin{align*}
\boldsymbol{\Omega}_{\uparrow}(\boldsymbol{\sigma}) & =i\left\langle\left.\frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma}) \right\rvert\, \downarrow(\boldsymbol{\sigma})\right\rangle \times\left\langle\downarrow(\boldsymbol{\sigma}) \left\lvert\, \frac{\partial}{\partial \boldsymbol{\sigma}} \uparrow(\boldsymbol{\sigma})\right.\right\rangle \\
& =\frac{i}{\left(\epsilon_{\uparrow}(\boldsymbol{\sigma})-\epsilon_{\downarrow}(\boldsymbol{\sigma})\right)^{2}}\langle\uparrow(\boldsymbol{\sigma})| \frac{\partial H(\boldsymbol{\sigma})}{\partial \boldsymbol{\sigma}}|\downarrow(\boldsymbol{\sigma})\rangle \times\langle\downarrow(\boldsymbol{\sigma})| \frac{\partial H(\boldsymbol{\sigma})}{\partial \boldsymbol{\sigma}}|\uparrow(\boldsymbol{\sigma})\rangle, \tag{22}
\end{align*}
$$

suggesting that when $\epsilon_{\uparrow}(\boldsymbol{\sigma}) \sim \epsilon_{\downarrow}(\boldsymbol{\sigma})$ the Berry curvature $\Omega_{\uparrow}(\boldsymbol{\sigma})$ becomes large. Note that the advantage of the last formula Eq. (22) is that there is no differentiation on the wave function.

II. THOULESS PUMPING [1, 4]

Now we shall extend our interest to solid state physics and explore the Berry phase accompanying Bloch electron.The model Hamiltonian is one for a 1D electron in a slowly varing periodic potential

$$
\begin{equation*}
H(t)=\frac{p}{2 m}+V(x, t) \tag{23}
\end{equation*}
$$

where the potential $V(x, t)$ assumes the periodic boundary condition $V(x+a, t)=V(x, t)$ all the time, where a is the lattice constant. According to Bloch's theorem the instantaneous eigenstates can be given by the Bloch form:

$$
\begin{equation*}
\left|\psi_{n, k}(x, t)\right\rangle=e^{i k x}\left|u_{n, k}(x, t)\right\rangle \tag{24}
\end{equation*}
$$

with the twisted periodic boundary condition:

$$
\begin{equation*}
\left|\psi_{n, k}(x+a, t)\right\rangle=e^{i k a}\left|\psi_{n, k}(x, t)\right\rangle \tag{25}
\end{equation*}
$$

where n stands for the band index and k does for the wave number. To eliminate the extra phase factor $e^{i k a}$ in the twisted periodic boundary condition, Eq. (25), we can use the cell-periodic part $\left|u_{n, k}(x, t)\right\rangle$ of the Bloch form Eq. (24) as the instantaneous eigenstates. This is basically a gauge-transformation. The boundary condition for $\left|u_{n, k}(x, t)\right\rangle$ is the ordinary one,

$$
\begin{equation*}
\left|u_{n, k}(x+a, t)\right\rangle=\left|u_{n, k}(x, t)\right\rangle, \tag{26}
\end{equation*}
$$

at the expense of the Hamiltonian Eq. (23) being changed into k-dependent form

$$
\begin{equation*}
H(k, t)=e^{-i k x} H(t) e^{i k x}=\frac{1}{2 m}(p+\hbar k)^{2}+V(x, t) \tag{27}
\end{equation*}
$$

The k-dependent Hamiltonian can be derived from the fact that

$$
\begin{align*}
e^{-i k x} p e^{i k x} & =e^{-i k x}\left(-i \hbar \frac{\partial}{\partial x}\right) e^{i k x} \\
& =\hbar k-i \hbar \frac{\partial}{\partial x}=\hbar k+p \tag{28}
\end{align*}
$$

A. Zero-order current: j_{0}

The velocity of the electron can be given by

$$
\begin{equation*}
v=-\frac{i}{\hbar}[x, H] \tag{29}
\end{equation*}
$$

The velocity of the electron in a state of given k and band index n can then be obtained by

$$
\begin{align*}
v_{n, k}^{(0)} & \equiv\left\langle u_{n, k}\right| e^{-i k x} v e^{i k x}\left|u_{n, k}\right\rangle \\
& =-\frac{i}{\hbar}\left\langle u_{n, k}\right| e^{-i k x}[x, H] e^{i k x}\left|u_{n, k}\right\rangle \\
& =-\frac{i}{\hbar}\left\langle u_{n, k}\right|\left[x, e^{-i k x} H e^{i k x}\right]\left|u_{n, k}\right\rangle \\
& =-\frac{i}{\hbar}\left\langle u_{n, k}\right|\left[x, \frac{1}{2 m}\left((p+\hbar k)^{2}+V(x)\right)\right]\left|u_{n, k}\right\rangle \\
& =-\frac{i}{\hbar}\left\langle u_{n, k}\right| \underbrace{\left[x, \frac{1}{2 m}\left(\left(-i \hbar \frac{\partial}{\partial x}+\hbar k\right)^{2}+V(x)\right)\right]}_{i \hbar \frac{p+\hbar k}{m}}\left|u_{n, k}\right\rangle \\
& =\left\langle u_{n, k}\right| \frac{1}{m}(p+\hbar k)\left|u_{n, k}\right\rangle \\
& =\frac{1}{\hbar}\left\langle u_{n, k}\right| \frac{\partial H}{\partial k}\left|u_{n, k}\right\rangle \\
& =\frac{1}{\hbar} \frac{\partial \epsilon_{n, k}}{\partial k} . \tag{30}
\end{align*}
$$

Integrating over the Brilloin zone we have the zero total current:

$$
\begin{align*}
j_{0} & =-e \sum_{n} \int_{\mathrm{BZ}} \frac{d k}{2 \pi} v_{n, k}^{(0)} \\
& =-e \sum_{n} \frac{1}{\hbar} \int_{\mathrm{BZ}} \frac{d k}{2 \pi} \frac{\partial \epsilon_{n, k}}{\partial k} \\
& =-e \sum_{n} \frac{1}{h} \int_{\mathrm{BZ}} d \epsilon_{n, k} \\
& =-e \sum_{n} \frac{1}{h}\left[\epsilon_{k=\frac{2 \pi}{a}, n}-\epsilon_{k=0, n}\right]=0 . \tag{31}
\end{align*}
$$

B. First-order current: j_{1}

Now let us look at the first-order correction to the adiabatic eigenstates $\left|u_{n, k}\right\rangle$. The purtabation theory tells us (see Appendix A) that the first-order approximation of the adiabatic eigenstates can be given by

$$
\begin{equation*}
\left|u_{k, n}^{(1)}\right\rangle=\left|u_{n, k}\right\rangle-i \hbar \sum_{n^{\prime} \neq n} \frac{\left|u_{n^{\prime}, k}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial t}\right.\right\rangle}{\epsilon_{n, k}-\epsilon_{k, n^{\prime}}} \tag{32}
\end{equation*}
$$

Thus the first-order correction to the velocity reads

$$
\begin{align*}
v_{n, k}^{(1)} & \equiv \frac{1}{\hbar}\left\langle u_{n, k}\right| \frac{\partial H}{\partial k}\left|\left(-i \hbar \sum_{n^{\prime} \neq n} \frac{\left|u_{n^{\prime}, k}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial t}\right.\right\rangle}{\epsilon_{n, k}-\epsilon_{k, n^{\prime}}}\right)+\frac{1}{\hbar}\left(i \hbar \sum_{n^{\prime} \neq n} \frac{\left\langle\left.\frac{\partial u_{n, k}}{\partial t} \right\rvert\, u_{n^{\prime}, k}\right\rangle\left\langle u_{n^{\prime}, k}\right|}{\epsilon_{n, k}-\epsilon_{k, n^{\prime}}}\right)\right| \frac{\partial H}{\partial k}\left|u_{n, k}\right\rangle \\
& =-i \sum_{n^{\prime} \neq n} \frac{1}{\epsilon_{n, k}-\epsilon_{k, n^{\prime}}}\left(\left\langle u_{n, k}\right| \frac{\partial H}{\partial k}\left|u_{n^{\prime}, k}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial t}\right.\right\rangle-\left\langle\left.\frac{\partial u_{n, k}}{\partial t} \right\rvert\, u_{n^{\prime}, k}\right\rangle\left\langle u_{n^{\prime}, k}\right| \frac{\partial H}{\partial k}\left|u_{n, k}\right\rangle\right) . \tag{33}
\end{align*}
$$

Now, let us exploit the similar relations as Eqs.(19) and (20):

$$
\begin{align*}
\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial k}\right.\right\rangle & =\frac{1}{\epsilon_{n, k}-\epsilon_{k, n^{\prime}}}\left\langle u_{n^{\prime}, k}\right| \frac{\partial H}{\partial k}\left|u_{n, k}\right\rangle \tag{34}\\
\left\langle\left.\frac{\partial u_{n, k}}{\partial k} \right\rvert\, u_{n^{\prime}, k}\right\rangle & =\frac{1}{\epsilon_{n, k}-\epsilon_{k, n^{\prime}}}\left\langle u_{n, k}\right| \frac{\partial H}{\partial k}\left|u_{n^{\prime}, k}\right\rangle, \tag{35}
\end{align*}
$$

to get

$$
\begin{align*}
v_{n, k}^{(1)} & =-i \sum_{n^{\prime} \neq n}\left(\left\langle\left.\frac{\partial u_{n, k}}{\partial k} \right\rvert\, u_{n^{\prime}, k}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial t}\right.\right\rangle-\left\langle\left.\frac{\partial u_{n, k}}{\partial t} \right\rvert\, u_{n^{\prime}, k}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial k}\right.\right\rangle\right) \\
& =-i\left(\left\langle\left.\frac{\partial u_{n, k}}{\partial k} \right\rvert\, \frac{\partial u_{n, k}}{\partial t}\right\rangle-\left\langle\left.\frac{\partial u_{n, k}}{\partial t} \right\rvert\, \frac{\partial u_{n, k}}{\partial k}\right\rangle\right) . \tag{36}
\end{align*}
$$

Remembering that

$$
\begin{align*}
& \sum_{n^{\prime} \neq n}\left(\left\langle\left.\frac{\partial u_{n, k}}{\partial k} \right\rvert\, u_{n^{\prime}, k}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial t}\right.\right\rangle-\left\langle\left.\frac{\partial u_{n, k}}{\partial t} \right\rvert\, u_{n^{\prime}, k}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial k}\right.\right\rangle\right) \\
= & \sum_{n^{\prime} \neq n}\left[\begin{array}{c}
\left\langle\frac{\partial u_{n, k}}{\partial k}\right. \\
\frac{\partial u_{n, k}}{\partial t}\left|u_{n^{\prime}, k}\right\rangle \\
0
\end{array}\right] \times\left.\left[\begin{array}{c}
\left\langle u_{n^{\prime}, k}\right\rangle \\
u_{n^{\prime}, k}\left|\frac{\partial u_{n, k}}{\partial k}\right\rangle \\
u_{n^{\prime}, k}\left|\frac{\partial u_{n, k}}{\partial t}\right\rangle \\
0
\end{array}\right]\right|_{z} \\
= & \sum_{n^{\prime} \neq n}\left\langle\left.\frac{\partial u_{n, k}}{\partial \boldsymbol{\sigma}} \right\rvert\, u_{n^{\prime}, k}\right\rangle \times\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial \boldsymbol{\sigma}}\right.\right\rangle, \tag{37}
\end{align*}
$$

and comparing the form of the Berry curvature in Eq. (16) we can recognize that $v_{n, k}^{(1)}$ is nothing but the Berry curvature:

$$
\begin{equation*}
v_{n, k}^{(1)}=-\Omega_{n, k} . \tag{38}
\end{equation*}
$$

This Berry curvature measures the curvature of the space spaned by the time t and the wave number k. Here t assumes the periodic boundary conditions $t+T=t$ and k assumes the periodic boundary conditions $k+G=k$ where $G=\frac{2 \pi}{a}$, the parameter space is torus. Integrating over the Brilloin zone we have the Berry-curvature induced abiabatic current:

$$
\begin{equation*}
j_{1}=-e \sum_{n} \int_{\mathrm{BZ}} \frac{d k}{2 \pi} v_{n, k}^{(1)}=e \sum_{n} \int_{\mathrm{BZ}} \frac{d k}{2 \pi} \Omega_{n, k} \tag{39}
\end{equation*}
$$

C. Quantization of charge transport [1, 6]

Now we shall see the number of charges transported by the n th-band adiabatic current per one-cycle of periodic time evolution is quantoized! To see this, let us integrate the $\frac{j_{1}}{e}$ over the one cycle of periodic time evolution:

$$
\begin{equation*}
c_{n}=\int_{0}^{T} d t \int_{\mathrm{BZ}} \frac{d k}{2 \pi} \Omega_{n, k} \tag{40}
\end{equation*}
$$

The quantitiy $2 \pi c_{n}$ is nothing but the Berry phase of this problem since the value is obtained by integrating the Berry curvature over the surface of the parameter space. By rescaling $t \rightarrow x=\frac{t}{T}$ and $k \rightarrow y=\frac{k}{G}$, we have

$$
\begin{equation*}
c_{n}=\frac{1}{2 \pi} \int_{0}^{1} d x \int_{0}^{1} d y \Omega(x, y) \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega(x, y)=\frac{\Omega_{n, k}}{T G} \tag{42}
\end{equation*}
$$

FIG. 1: Path $(0,0) \rightarrow(1,0) \rightarrow(1,1) \rightarrow(0,1) \rightarrow(0,0)$ is used to evaluate the integral Eq. (43).

We can now use the Stokes theorem to obtain the line integral form of Eq. (41), that is,

$$
\begin{align*}
c_{n} & =\frac{1}{2 \pi} \oint_{\mathrm{C}} d l A(x, y) \\
& =\frac{1}{2 \pi}\left(\int_{0}^{1} d x A(x, 0)+\int_{0}^{1} d y A(1, y)+\int_{1}^{0} d x A(x, 1)+\int_{1}^{0} d y A(0, y)\right) \\
& =\frac{1}{2 \pi}\left(\int_{0}^{1} d x(A(x, 0)-A(x, 1))+\int_{0}^{1} d y(A(1, y)-A(0, y))\right) \tag{43}
\end{align*}
$$

where the line integral is along the path $(0,0) \rightarrow(1,0) \rightarrow(1,1) \rightarrow(0,1) \rightarrow(0,0)$ in Fig. 1. Here, the Berry connection $A(x, y)$ is given by

$$
\begin{equation*}
A(x, y)=i\langle u(x, y)| \nabla|u(x, y)\rangle \tag{44}
\end{equation*}
$$

Here a question regarding the gauge choice arises. We have tacitly assumed the so-called parallel transport gauge (see Appendix A), with which we have $A(x, y)=0$ in the bulk but $A(x, y) \neq 0$ at the edge, that is, we have used the following boundary conditions $[1,4]$:

$$
\begin{align*}
|u(x, 1)\rangle & =e^{i \theta_{x}(x)}|u(x, 0)\rangle \tag{45}\\
|u(1, y)\rangle & =e^{i \theta_{y}(y)}|u(0, y)\rangle \tag{46}
\end{align*}
$$

Thus,

$$
\begin{align*}
A(x, 0)-A(x, 1) & =i\langle u(x, 0)| \frac{\partial}{\partial x}|u(x, 0)\rangle+i\langle u(x, 1)| \frac{\partial}{\partial x}|u(x, 1)\rangle \\
& =i\langle u(x, 0)| \frac{\partial}{\partial x}|u(x, 0)\rangle+i\langle u(x, 0)| e^{-i \theta_{x}(x)} \frac{\partial}{\partial x} e^{i \theta_{x}(x)}|u(x, 0)\rangle \\
& =\frac{\partial \theta_{x}(x)}{\partial x} \tag{47}
\end{align*}
$$

and similarly

$$
\begin{equation*}
A(0, y)-A(1, y)=\frac{\partial \theta_{y}(y)}{\partial y} \tag{48}
\end{equation*}
$$

Consequently, the line integral Eq. (43) becomes

$$
\begin{align*}
c_{n} & =\frac{1}{2 \pi}\left(\int_{0}^{1} \frac{\partial \theta_{x}(x)}{\partial x} d x-\int_{0}^{1} d y \frac{\partial \theta_{y}(y)}{\partial y}\right) \\
& =\frac{1}{2 \pi}\left(\int_{0}^{1} d \theta_{x}(x)-\int_{0}^{1} d \theta_{y}(y)\right) \\
& =\frac{1}{2 \pi}\left(\theta_{x}(1)-\theta_{x}(0)-\theta_{y}(1)+\theta_{y}(0)\right) . \tag{49}
\end{align*}
$$

On the other hand, the single-valuedness of the wave function requires

$$
\begin{equation*}
|u(0,0)\rangle=\exp \left[i\left(\theta_{x}(0)+\theta_{y}(1)-\theta_{x}(1)-\theta_{y}(0)\right)\right]|u(0,0)\rangle, \tag{50}
\end{equation*}
$$

since the wave function acqires the phase $\theta_{y}(0)$ from $(0,0)$ to $(1,0), \theta_{x}(1)$ from $(1,0)$ to $(1,1),-\theta_{y}(1)$ from $(1,1)$ to $(0,1)$, and $-\theta_{x}(1)$ from $(0,1)$ to $(0,0)$. We thus conclude that

$$
\begin{equation*}
\theta_{y}(0)+\theta_{x}(1)-\theta_{y}(1)-\theta_{x}(0)=2 \pi Z, \tag{51}
\end{equation*}
$$

where Z is integer, and the line integral Eq. (49) becomes

$$
\begin{equation*}
c_{n}=Z \tag{52}
\end{equation*}
$$

This proves the initial statement that the number of charges transported by the n th-band adiabatic current per onecycle of periodic time evolution is quantized. This kind of quantized charge transport is called Thouless pumping [6].

Appendix A: First-order correction of the quantum adiabatic theorem [1, 4]

Here we derive $\left|u_{n, k}^{(1)}\right\rangle$ in Eq. (32) with the perturbation thoey. The relevent time-dependent Schrödinger equation reads

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}\left|\psi_{k}(t)\right\rangle=H_{k}(t)\left|\psi_{k}(t)\right\rangle . \tag{A1}
\end{equation*}
$$

The state $\left|\psi_{k}(t)\right\rangle$ can be expanded using the instantaneous eigenstates $\left|u_{n, k}(t)\right\rangle$ as

$$
\begin{equation*}
\left|\psi_{k}(t)\right\rangle=\sum_{n} \exp \left[-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \epsilon_{n, k}\right] a_{n, k}(t)\left|u_{n, k}(t)\right\rangle \tag{A2}
\end{equation*}
$$

where $a_{n, k}$ are the coefficients. By plugging Eq. (A2) into Eq. (A1) and multiply $\left\langle u_{n^{\prime}, k}\right|$ from the left we find that the coefficients $a_{n, k}$ satisfy

$$
\begin{equation*}
\dot{a}_{n^{\prime}, k}(t)=-\sum_{n} a_{n, k}(t) \exp \left[-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime}\left(\epsilon_{n, k}-\epsilon_{n^{\prime}, k}\right)\right]\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial t}\right.\right\rangle . \tag{A3}
\end{equation*}
$$

Now we use the parallel transport gauge [1, 4], that is, the phase of $\left|u_{n, k}\right\rangle$ is chosen to be satisfy

$$
\begin{equation*}
\left\langle u_{n, k}(t)\right| \frac{\partial}{\partial t}\left|u_{n, k}(t)\right\rangle=0 \tag{A4}
\end{equation*}
$$

except for the edge region. This means that the Berry connection is zero in the bulk but non-zero at the edge. This brings us to the conclusion that

$$
\begin{equation*}
\dot{a}_{n, k}(t)=0 \tag{A5}
\end{equation*}
$$

when $a_{n, k}(0)=1$, that is, the state is initially in the eigenstate $\left|u_{n, k}\right\rangle$. Thus $\left|u_{n, k}\right\rangle$ stays in the same state. This is the quantum adiabatic theorem.

The first-order correction of this situation is crucial for the Thouless pumping and can be obtained in the following way. Suppose we have $a_{n, k}(0)=1$ and $a_{n^{\prime}, k}(0)=0$ for $n^{\prime} \neq n$. In this case Eq. (A5) is still intact but we have from Eq. (A3) with $a_{n, k}(t) \sim 1$

$$
\begin{equation*}
\dot{a}_{n^{\prime}, k}(t)=-\exp \left[-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime}\left(\epsilon_{n, k}-\epsilon_{n^{\prime}, k}\right)\right]\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial t}\right.\right\rangle . \tag{A6}
\end{equation*}
$$

The solution of this integro-differential equation can be obtained by assuming that $\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial t}\right.\right\rangle$ is more or less constant as compared with the exponetial part. The resultant solution is given by

$$
\begin{equation*}
a_{n^{\prime}, k}(t)=-\exp \left[-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime}\left(\epsilon_{n, k}-\epsilon_{n^{\prime}, k}\right)\right]\left(\frac{i \hbar\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial t}\right.\right\rangle}{\epsilon_{n, k}-\epsilon_{n^{\prime}, k}}\right) . \tag{A7}
\end{equation*}
$$

Plugging this results for $a_{n^{\prime}, k}(t)$ and $a_{n, k}(t)=1$ into Eq. (A2), we have

$$
\begin{equation*}
\left|\psi_{k}(t)\right\rangle=\exp \left[-\frac{i}{\hbar} \int_{t_{0}}^{t} d t^{\prime} \epsilon_{n, k}\right](\underbrace{\left|u_{n, k}(t)\right\rangle-i \hbar \sum_{n^{\prime} \neq n} \frac{\left|u_{n^{\prime}, k}\right\rangle\left\langle u_{n^{\prime}, k} \left\lvert\, \frac{\partial u_{n, k}}{\partial t}\right.\right\rangle}{\epsilon_{n, k}-\epsilon_{n^{\prime}, k}}}_{\left|u_{n, k}^{(1)}\right\rangle}) . \tag{A8}
\end{equation*}
$$

[1] D. Xiao, M. -C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010).
[2] A. Altland and B. D. Simons, Condensed Matter Field Theory, 2nd ed. (Cambridge University Press, Cambridge, 2010).
[3] J. J. Sakurai, Modern Quantum Mechanics, revised ed. (Addison-Wesley, Reading, MA, 1994).
[4] D. Vanderbilt, Berry Phase in Electronic Structure Threory (Cambridge University Press, Cambridge, 2018).
[5] M. V. Berry, Proc. R. Soc. Lond. A 392, 45 (1984).
[6] D. J. Thouless, Phys. Rev. B 27, 6083 (1983).

[^0]: *Electronic address: usami@qc.rcast.u-tokyo.ac.jp

