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We shall find that the Berry phase appears when a quantum state undergoes an adiabatic evolution
with a time-dependent Hamiltonian. This sets the stage to explore the yet another interesting
quantization phenomenon, the Thouless pumping. Here the parameter space is torus and spaned by
the time t and the wave number k, both of which are periodic.

I. BERRY PHASE AND ADIABATIC CHANGES OF A QUANTUM STATE [1–4]

So far we investigated the Berry phase with path integral method, which basically means that we treated the

inherently quantum-mechanical electron spin as the classical megnetic moment, n = m
m0

=

 sin θ cosϕ
sin θ sinϕ

cos θ

. Now, we

shall revisit the Berry phase by analyzing the adiabatic evolution of a quantum state | ↑ (t)⟩, which is the lowest
energy eigenstate of a time-dependent Hamiltonian H(t).

A. Adiabatic changes of a quantum state

Let the time-dependent Hamiltonian be

H(t) = −m ·B(t) = h̄γsσ ·B(t). (1)

Suppose that the magnetic field at t = 0 is B(0) = B(0)

 0
0
1

 and the spin starts at t = 0 in one of the eignestates

| ↑ (0)⟩︸ ︷︷ ︸
for magnetic moment

= | ⇓ (0)⟩︸ ︷︷ ︸
for spin

=

[
0
1

]
(2)

with the energy ϵ↑(0) = ϵ⇓(0) = −1
2 h̄γsB(0). When the time-variation of the Hamiltonian H(t) is abiabatic the spin

state remains in the instantaneous eigenstate of H(t), that is,

| ↑ (t)⟩ = | ⇓ (t)⟩ =

[
−e−i

ϕ(t)
2 sin θ(t)

2

ei
ϕ(t)
2 cos θ(t)

2

]
, (3)

with the energy ϵ↑(t) = ϵ⇓(t) = −1
2 h̄γsB(t). Here, at t the magnetic field is assumed to be

B(t) = B(t)

 sin θ(t) sinϕ(t)
sin θ(t) cosϕ(t)

cos θ(t)

 . (4)

Now suppose that, at the end of the evolution t = T , the Hamiltonian returns to the original one, that is, H(T ) = H(0)
and thus the state must come back to the original state with some phase factor, that is,

| ↑ (T )⟩ = e−iΦ(T )| ↑ (0)⟩. (5)

We shall see that the phase can be written as [5]

Φ(T ) = Φ(0)︸︷︷︸
initial phase

+
1

h̄

∫ T

0

dtϵ↑(t)︸ ︷︷ ︸
dynamical phase

− γ↑︸︷︷︸
Berry phase

. (6)
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The starting point is the time-dependent Schrödinger equation:

ih̄
∂

∂t
|ψ(t)⟩ = H(t)|ψ(t)⟩, (7)

where the wave function |ψ(t)⟩ can be assumed to be the instantaneous eigenstate | ↑ (t)⟩ with some phase factor,
that is,

|ψ(t)⟩ = e−iΦ(t)| ↑ (t)⟩ (8)

since |ψ(t)⟩ changes adiabatically from | ↑ (0)⟩ to | ↑ (T )⟩ in a course of time evolution. This adiabatic approximation
is essentially equivalent to performing a projection operation on the state |ψ(t)⟩ to restrict it to the eigenstates
| ↑ (t)⟩ [1]. Plugging this form of wave function into Eq. (7) and operate ⟨↑ (t)| from the left we have

h̄
∂Φ(t)

∂t
+ ih̄

⟨
↑ (t)

∣∣∣∣ ∂∂t
∣∣∣∣↑ (t)

⟩
= ϵ↑(t). (9)

By integrating both sides with respect to t from 0 to T we have

h̄ (Φ(T )− Φ(0)) + h̄

∫ T

0

dt i

⟨
↑ (t)

∣∣∣∣ ∂∂t
∣∣∣∣↑ (t)

⟩
=

∫ T

0

dtϵ↑(t), (10)

which indeed indicates Eq.(6) with the Berry phase [5]:

γ↑ =

∫ T

0

dt i

⟨
↑ (t)

∣∣∣∣ ∂∂t
∣∣∣∣↑ (t)

⟩
=

∫ T

0

dt

(
i

⟨
↑ (σ(t))

∣∣∣∣ ∂

∂σ(t)

∣∣∣∣↑ (σ(t))

⟩)
σ̇(t)

=

∮
C

dσ ·
(
i

⟨
↑ (σ)

∣∣∣∣ ∂∂σ
∣∣∣∣↑ (σ)

⟩)
︸ ︷︷ ︸

A↑: Berry connection

=

∫
A
dS · (∇×A↑)︸ ︷︷ ︸

Ω↑: Berry curvature

. (11)

This establishes the close link between the Berry phase and adiabatic evolution of the quantum state | ↑ (t)⟩. Note that
γ↑ does not depend on the velocity σ̇ in this setting and stems from the geometry of the space where the eigenstates
| ↑ (t)⟩ lives. Thus, the Berry phase is also called the geometric phase.

B. Calcution of Berry curvatures

Unlike the Berry connection, the Berry curvature and the Berry phase are gauge-independent and observable.
Especially the Berry curvature can be evaluated locally at σ, that is, in the Euler angle representation, at (ϕ, θ). Let
us explore several ways in which the Berry curvature Ω↑ can be calculated.

1. From Euler angle representation

We know from the last lecture that

Ω↑(ϕ, θ) = ∇×A↑(ϕ, θ)

= ∇×

 0
0

1−cos θ
sin θ

 ==

 1
1
2 sin θ

∂
∂θ

(
sin θ

(
1−cos θ
sin θ

))
0
0

 =

 2
0
0

 = 2er. (12)
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2. From spinor representation

The Berry connection A↑ can also be written in terms of spinor representation as

A↑ ≡ A⇓ = i

⟨
↑ (σ)

∣∣∣∣ ∂∂σ
∣∣∣∣↑ (σ)

⟩
= i

⟨
⇓ (σ)

∣∣∣∣ ∂∂σ
∣∣∣∣⇓ (σ)

⟩
= i

([
−ei

ϕ
2 sin

θ

2
, e−iϕ

2 cos
θ

2

]
·

(
∇
[
−e−iϕ

2 sin θ
2

ei
ϕ
2 cos θ

2

]))

= i

([
−ei

ϕ
2 sin

θ

2
, e−iϕ

2 cos
θ

2

]
·

(
eθ

1
1
2

∂

∂θ

[
−e−iϕ

2 sin θ
2

ei
ϕ
2 cos θ

2

]
+ eϕ

1
1
2 sin θ

∂

∂ϕ

[
−e−iϕ

2 sin θ
2

ei
ϕ
2 cos θ

2

]))

= i

([
−ei

ϕ
2 sin

θ

2
, e−iϕ

2 cos
θ

2

]
·

([
−e−iϕ

2 cos θ
2

−ei
ϕ
2 sin θ

2

]
eθ +

1

sin θ

[
ie−iϕ

2 sin θ
2

iei
ϕ
2 cos θ

2

]
eϕ

))

= i

((
sin

θ

2
cos

θ

2
− cos

θ

2
sin

θ

2

)
eθ +

1

sin θ

(
−i sin2 θ

2
+ i cos2

θ

2

)
eϕ

)
= −cos θ

sin θ
eϕ. (13)

With this Berry connection, we arrive at the same Berry curvature:

Ω↑(σ) = ∇×A↑

= ∇×
(
i

⟨
↑ (σ)

∣∣∣∣ ∂∂σ
∣∣∣∣↑ (σ)

⟩)

= ∇×

 0
0

− cos θ
sin θ

 =

 1
1
2 sin θ

∂
∂θ

(
sin θ

(
− cos θ

sin θ

))
0
0


=

 2
0
0

 = 2er. (14)

3. From first-order correction to the adiabatic eigenstates

From the vector identity

∇× (f∇g) = ∇f ×∇g, (15)

the second expression in Eq. (14) can also be written as

Ω↑(σ) = ∇× (i ⟨↑ (σ)|∇|↑ (σ)⟩)
= i⟨∇ ↑ (σ)| × |∇ ↑ (σ)⟩

= i

⟨
∂

∂σ
↑ (σ)

∣∣∣∣×∣∣∣∣ ∂∂σ ↑ (σ)

⟩
= i

∑
m=↑,↓

⟨
∂

∂σ
↑ (σ)

∣∣∣∣m(σ)

⟩
×
⟨
m(σ)

∣∣∣∣ ∂∂σ ↑ (σ)

⟩
(16)

= i

⟨
∂

∂σ
↑ (σ)

∣∣∣∣↓ (σ)

⟩
×
⟨
↓ (σ)

∣∣∣∣ ∂∂σ ↑ (σ)

⟩
, (17)

where last equality comes from the fact that⟨
∂

∂σ
↑ (σ)

∣∣∣∣↑ (σ)

⟩
= −

⟨
↑ (σ)

∣∣∣∣ ∂∂σ ↑ (σ)

⟩
. (18)
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This form allows us to explore the relation between the Berry courvature and degeneracy points. To see this relation,
let us exploit the following relations:⟨

↓ (σ)

∣∣∣∣ ∂∂σ ↑ (σ)

⟩
=

1

ϵ↑(σ)− ϵ↓(σ)

⟨
↓ (σ)

∣∣∣∣∂H(σ)

∂σ

∣∣∣∣↑ (σ)

⟩
(19)⟨

∂

∂σ
↑ (σ)

∣∣∣∣↓ (σ)

⟩
=

1

ϵ↑(σ)− ϵ↓(σ)

⟨
↑ (σ)

∣∣∣∣∂H(σ)

∂σ

∣∣∣∣↓ (σ)

⟩
, (20)

where | ↑ (σ)⟩ (| ↓ (σ)⟩) and ϵ↑(σ) (ϵ↓(σ)) are the eigenstate and the eigenvalue of the Hamiltonian H(t) = H(σ(t))
in Eq. (1). The relation can be obtained by differentiating the eigenequation

H(σ)| ↑ (σ)⟩ = ϵ↑(σ)| ↑ (σ)⟩ (21)

by σ and then by projecting on the state ⟨↓ (σ)|. With Eqs. (19) and (20), the Berry curvature Eq. (17) becomes

Ω↑(σ) = i

⟨
∂

∂σ
↑ (σ)

∣∣∣∣↓ (σ)

⟩
×
⟨
↓ (σ)

∣∣∣∣ ∂∂σ ↑ (σ)

⟩
=

i

(ϵ↑(σ)− ϵ↓(σ))
2

⟨
↑ (σ)

∣∣∣∣∂H(σ)

∂σ

∣∣∣∣↓ (σ)

⟩
×
⟨
↓ (σ)

∣∣∣∣∂H(σ)

∂σ

∣∣∣∣↑ (σ)

⟩
, (22)

suggesting that when ϵ↑(σ) ∼ ϵ↓(σ) the Berry curvature Ω↑(σ) becomes large. Note that the advantage of the last
formula Eq. (22) is that there is no differentiation on the wave function.

II. THOULESS PUMPING [1, 4]

Now we shall extend our interest to solid state physics and explore the Berry phase accompanying Bloch electron.The
model Hamiltonian is one for a 1D electron in a slowly varing periodic potential

H(t) =
p

2m
+ V (x, t), (23)

where the potential V (x, t) assumes the periodic boundary condition V (x+ a, t) = V (x, t) all the time, where a is the
lattice constant. According to Bloch’s theorem the instantaneous eigenstates can be given by the Bloch form:

|ψn,k(x, t)⟩ = eikx|un,k(x, t)⟩, (24)

with the twisted periodic boundary condition:

|ψn,k(x+ a, t)⟩ = eika|ψn,k(x, t)⟩ (25)

where n stands for the band index and k does for the wave number. To eliminate the extra phase factor eika in the
twisted periodic boundary condition, Eq. (25), we can use the cell-periodic part |un,k(x, t)⟩ of the Bloch form Eq. (24)
as the instantaneous eigenstates. This is basically a gauge-transformation. The boundary condition for |un,k(x, t)⟩ is
the ordinary one,

|un,k(x+ a, t)⟩ = |un,k(x, t)⟩, (26)

at the expense of the Hamiltonian Eq. (23) being changed into k-dependent form

H(k, t) = e−ikxH(t)eikx =
1

2m
(p+ h̄k)

2
+ V (x, t). (27)

The k-dependent Hamiltonian can be derived from the fact that

e−ikxpeikx = e−ikx

(
−ih̄ ∂

∂x

)
eikx

= h̄k − ih̄
∂

∂x
= h̄k + p. (28)
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A. Zero-order current: j0

The velocity of the electron can be given by

v = − i

h̄
[x,H] . (29)

The velocity of the electron in a state of given k and band index n can then be obtained by

v
(0)
n,k ≡ ⟨un,k|e−ikxveikx|un,k⟩

= − i

h̄
⟨un,k|e−ikx [x,H] eikx|un,k⟩

= − i

h̄
⟨un,k|

[
x, e−ikxHeikx

]
|un,k⟩

= − i

h̄
⟨un,k|

[
x,

1

2m

(
(p+ h̄k)

2
+ V (x)

)]
|un,k⟩

= − i

h̄
⟨un,k|

[
x,

1

2m

((
−ih̄ ∂

∂x
+ h̄k

)2

+ V (x)

)]
︸ ︷︷ ︸

ih̄ p+h̄k
m

|un,k⟩

= ⟨un,k|
1

m
(p+ h̄k) |un,k⟩

=
1

h̄
⟨un,k|

∂H

∂k
|un,k⟩

=
1

h̄

∂ϵn,k
∂k

. (30)

Integrating over the Brilloin zone we have the zero total current:

j0 = −e
∑
n

∫
BZ

dk

2π
v
(0)
n,k

= −e
∑
n

1

h̄

∫
BZ

dk

2π

∂ϵn,k
∂k

= −e
∑
n

1

h

∫
BZ

dϵn,k

= −e
∑
n

1

h

[
ϵk= 2π

a ,n − ϵk=0,n

]
= 0. (31)

B. First-order current: j1

Now let us look at the first-order correction to the adiabatic eigenstates |un,k⟩. The purtabation theory tells us (see
Appendix A) that the first-order approximation of the adiabatic eigenstates can be given by

|u(1)k,n⟩ = |un,k⟩ − ih̄
∑
n′ ̸=n

|un′,k⟩
⟨
un′,k

∣∣∣∂un,k

∂t

⟩
ϵn,k − ϵk,n′

. (32)

Thus the first-order correction to the velocity reads

v
(1)
n,k ≡ 1

h̄
⟨un,k|

∂H

∂k
|

−ih̄
∑
n′ ̸=n

|un′,k⟩
⟨
un′,k

∣∣∣∂un,k

∂t

⟩
ϵn,k − ϵk,n′

+
1

h̄

ih̄ ∑
n′ ̸=n

⟨
∂un,k

∂t

∣∣∣un′,k

⟩
⟨un′,k|

ϵn,k − ϵk,n′

 |∂H
∂k

|un,k⟩

= −i
∑
n′ ̸=n

1

ϵn,k − ϵk,n′

(⟨
un,k|

∂H

∂k
|un′,k

⟩⟨
un′,k

∣∣∣∣∂un,k∂t

⟩
−
⟨
∂un,k
∂t

∣∣∣∣un′,k

⟩⟨
un′,k|

∂H

∂k
|un,k

⟩)
. (33)
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Now, let us exploit the similar relations as Eqs.(19) and (20):⟨
un′,k

∣∣∣∣∂un,k∂k

⟩
=

1

ϵn,k − ϵk,n′

⟨
un′,k

∣∣∣∣∂H∂k
∣∣∣∣un,k⟩ (34)⟨

∂un,k
∂k

∣∣∣∣un′,k

⟩
=

1

ϵn,k − ϵk,n′

⟨
un,k

∣∣∣∣∂H∂k
∣∣∣∣un′,k

⟩
, (35)

to get

v
(1)
n,k = −i

∑
n′ ̸=n

(⟨
∂un,k
∂k

∣∣∣∣un′,k

⟩⟨
un′,k

∣∣∣∣∂un,k∂t

⟩
−
⟨
∂un,k
∂t

∣∣∣∣un′,k

⟩⟨
un′,k

∣∣∣∣∂un,k∂k

⟩)

= −i
(⟨

∂un,k
∂k

∣∣∣∣∂un,k∂t

⟩
−
⟨
∂un,k
∂t

∣∣∣∣∂un,k∂k

⟩)
. (36)

Remembering that ∑
n′ ̸=n

(⟨
∂un,k
∂k

∣∣∣∣un′,k

⟩⟨
un′,k

∣∣∣∣∂un,k∂t

⟩
−
⟨
∂un,k
∂t

∣∣∣∣un′,k

⟩⟨
un′,k

∣∣∣∣∂un,k∂k

⟩)

=
∑
n′ ̸=n


⟨

∂un,k

∂k

∣∣∣un′,k

⟩⟨
∂un,k

∂t

∣∣∣un′,k

⟩
0

×


⟨
un′,k

∣∣∣∂un,k

∂k

⟩⟨
un′,k

∣∣∣∂un,k

∂t

⟩
0


∣∣∣∣∣∣∣∣
z

=
∑
n′ ̸=n

⟨
∂un,k
∂σ

∣∣∣∣un′,k

⟩
×
⟨
un′,k

∣∣∣∣∂un,k∂σ

⟩
, (37)

and comparing the form of the Berry curvature in Eq. (16) we can recognize that v
(1)
n,k is nothing but the Berry

curvature:

v
(1)
n,k = −Ωn,k. (38)

This Berry curvature measures the curvature of the space spaned by the time t and the wave number k. Here t
assumes the periodic boundary conditions t + T = t and k assumes the periodic boundary conditions k + G = k
where G = 2π

a , the parameter space is torus. Integrating over the Brilloin zone we have the Berry-curvature induced
abiabatic current :

j1 = −e
∑
n

∫
BZ

dk

2π
v
(1)
n,k = e

∑
n

∫
BZ

dk

2π
Ωn,k (39)

C. Quantization of charge transport [1, 6]

Now we shall see the number of charges transported by the nth-band adiabatic current per one-cycle of periodic
time evolution is quantoized! To see this, let us integrate the j1

e over the one cycle of periodic time evolution:

cn =

∫ T

0

dt

∫
BZ

dk

2π
Ωn,k. (40)

The quantitiy 2πcn is nothing but the Berry phase of this problem since the value is obtained by integrating the Berry
curvature over the surface of the parameter space. By rescaling t→ x = t

T and k → y = k
G , we have

cn =
1

2π

∫ 1

0

dx

∫ 1

0

dy Ω(x, y), (41)

where

Ω(x, y) =
Ωn,k

TG
. (42)
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1
x

1

y

FIG. 1: Path (0, 0) → (1, 0) → (1, 1) → (0, 1) → (0, 0) is used to evaluate the integral Eq. (43).

We can now use the Stokes theorem to obtain the line integral form of Eq. (41), that is,

cn =
1

2π

∮
C

dlA(x, y)

=
1

2π

(∫ 1

0

dxA(x, 0) +

∫ 1

0

dyA(1, y) +

∫ 0

1

dxA(x, 1) +

∫ 0

1

dyA(0, y)

)
=

1

2π

(∫ 1

0

dx (A(x, 0)−A(x, 1)) +

∫ 1

0

dy (A(1, y)−A(0, y))

)
, (43)

where the line integral is along the path (0, 0) → (1, 0) → (1, 1) → (0, 1) → (0, 0) in Fig. 1. Here, the Berry connection
A(x, y) is given by

A(x, y) = i ⟨u(x, y)|∇|u(x, y)⟩ . (44)

Here a question regarding the gauge choice arises. We have tacitly assumed the so-called parallel transport gauge
(see Appendix A), with which we have A(x, y) = 0 in the bulk but A(x, y) ̸= 0 at the edge, that is, we have used the
following boundary conditions [1, 4]:

|u(x, 1)⟩ = eiθx(x)|u(x, 0)⟩ (45)

|u(1, y)⟩ = eiθy(y)|u(0, y)⟩. (46)

Thus,

A(x, 0)−A(x, 1) = i

⟨
u(x, 0)

∣∣∣∣ ∂∂x
∣∣∣∣u(x, 0)⟩+ i

⟨
u(x, 1)

∣∣∣∣ ∂∂x
∣∣∣∣u(x, 1)⟩

= i

⟨
u(x, 0)

∣∣∣∣ ∂∂x
∣∣∣∣u(x, 0)⟩+ i

⟨
u(x, 0)

∣∣∣∣e−iθx(x)
∂

∂x
eiθx(x)

∣∣∣∣u(x, 0)⟩
=

∂θx(x)

∂x
, (47)

and similarly

A(0, y)−A(1, y) =
∂θy(y)

∂y
. (48)

Consequently, the line integral Eq. (43) becomes

cn =
1

2π

(∫ 1

0

∂θx(x)

∂x
dx−

∫ 1

0

dy
∂θy(y)

∂y

)
=

1

2π

(∫ 1

0

dθx(x)−
∫ 1

0

dθy(y)

)
=

1

2π
(θx(1)− θx(0)− θy(1) + θy(0)) . (49)
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On the other hand, the single-valuedness of the wave function requires

|u(0, 0)⟩ = exp [i (θx(0) + θy(1)− θx(1)− θy(0))] |u(0, 0)⟩, (50)

since the wave function acqires the phase θy(0) from (0, 0) to (1, 0), θx(1) from (1, 0) to (1, 1), −θy(1) from (1, 1) to
(0, 1), and −θx(1) from (0, 1) to (0, 0). We thus conclude that

θy(0) + θx(1)− θy(1)− θx(0) = 2πZ, (51)

where Z is integer, and the line integral Eq. (49) becomes

cn = Z. (52)

This proves the initial statement that the number of charges transported by the nth-band adiabatic current per one-
cycle of periodic time evolution is quantized. This kind of quantized charge transport is called Thouless pumping [6].

Appendix A: First-order correction of the quantum adiabatic theorem [1, 4]

Here we derive
∣∣∣u(1)n,k

⟩
in Eq. (32) with the perturbation thoey. The relevent time-dependent Schrödinger equation

reads

ih̄
∂

∂t
|ψk(t)⟩ = Hk(t) |ψk(t)⟩ . (A1)

The state |ψk(t)⟩ can be expanded using the instantaneous eigenstates |un,k(t)⟩ as

|ψk(t)⟩ =
∑
n

exp

[
− i

h̄

∫ t

t0

dt′ϵn,k

]
an,k(t) |un,k(t)⟩ , (A2)

where an,k are the coefficients. By plugging Eq. (A2) into Eq. (A1) and multiply ⟨un′,k| from the left we find that
the coefficients an,k satisfy

ȧn′,k(t) = −
∑
n

an,k(t) exp

[
− i

h̄

∫ t

t0

dt′ (ϵn,k − ϵn′,k)

]⟨
un′,k

∣∣∣∣∂un,k∂t

⟩
. (A3)

Now we use the parallel transport gauge [1, 4], that is, the phase of |un,k⟩ is chosen to be satisfy⟨
un,k(t)

∣∣∣∣ ∂∂t
∣∣∣∣un,k(t)⟩ = 0 (A4)

except for the edge region. This means that the Berry connection is zero in the bulk but non-zero at the edge. This
brings us to the conclusion that

ȧn,k(t) = 0 (A5)

when an,k(0) = 1, that is, the state is initially in the eigenstate |un,k⟩. Thus |un,k⟩ stays in the same state. This is
the quantum adiabatic theorem.
The first-order correction of this situation is crucial for the Thouless pumping and can be obtained in the following

way. Suppose we have an,k(0) = 1 and an′,k(0) = 0 for n′ ̸= n. In this case Eq. (A5) is still intact but we have from
Eq. (A3) with an,k(t) ∼ 1

ȧn′,k(t) = − exp

[
− i

h̄

∫ t

t0

dt′ (ϵn,k − ϵn′,k)

]⟨
un′,k

∣∣∣∣∂un,k∂t

⟩
. (A6)

The solution of this integro-differential equation can be obtained by assuming that
⟨
un′,k

∣∣∣∂un,k

∂t

⟩
is more or less

constant as compared with the exponetial part. The resultant solution is given by

an′,k(t) = − exp

[
− i

h̄

∫ t

t0

dt′ (ϵn,k − ϵn′,k)

] ih̄
⟨
un′,k

∣∣∣∂un,k

∂t

⟩
ϵn,k − ϵn′,k

 . (A7)
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Plugging this results for an′,k(t) and an,k(t) = 1 into Eq. (A2), we have

|ψk(t)⟩ = exp

[
− i

h̄

∫ t

t0

dt′ϵn,k

]

|un,k(t)⟩ − ih̄

∑
n′ ̸=n

|un′,k⟩
⟨
un′,k

∣∣∣∂un,k

∂t

⟩
ϵn,k − ϵn′,k︸ ︷︷ ︸∣∣∣u(1)

n,k

⟩


. (A8)
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