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We shall look at the electric polarization for 1D crystal from the view point of Berry phase. We
find that the electric polarization not only reflects the local charge density ρ but also the global
topology of the band which encoded in the phase of the Bloch wave functions and thus in the Berry
connection. Here, the Zak phase, which is basically the Berry phase obtained by integrating the
Berry connection across the Brillouin zone, plays an important role. The Zak phase turns out to be
taken only two values (modulo 2π), 0 or π, when the crystal has the spatial symmetry of inversion.

I. ELECTRIC POLARIZATION [1, 2]

A. Statement of the problem

Electric dipole moment of an macroscopic object should be a vector with the dimension charge × distance. Thus, it
is tempting to think that the electric polarization (electric dipole moment per volume) can be defined by the average
of the charge density ρ(r) times the position r over the volume, that is

P =
1

Vcell

∫
rρ(r)dV. (1)

Quantummechanically, this formula involves the position operator r, which is ill-behaved in the cell-periodic crystalline
material where the electric states are described by Bloch functions with quantum number k. Moreover, the definition
is equivocal in a sense that the value P in Eq. (1) would change depending on how we define the unit cell. We thus
need to seek an alternative formula for the electric polarization.

B. Seeking an alternative expression

The key is to find the relationship between the electric polarization and the current. Let us find it from the simple
argument. The total charge in a dielectric sample is zero when the sample is electrically neutral. Thus, the volume
integral of the macroscopically averaged charge density ρ is zero, that is,∫

V
ρdV = 0. (2)

This suggests [3] that ρ can be given in terms of the electric polarization, P , which is nonzero only inside the sample,
that is,

ρ = −∇ · P , (3)

since ∫
V
ρdV = −

∫
V
(∇ · P ) dV

= −
∫
A
P dS = 0 (4)

where the integration volume V in the first line covers the entire smaple and the integration area A is the surface
enclosing the volume V, which means the area A is not touching the sample and the last equality results.

Now, the continuity equation tells us

∂ρ

∂t
+∇ · j = 0. (5)
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From Eqs. (3) and (5), we have

∇ ·
(
∂P

∂t
− j

)
= 0. (6)

Apart from the divergent-free terms (the so-called magnetization current) the change of the electric polarization can
thus be given by

∆P = P (T )− P (0) =

∫ T

0

jdt, (7)

where the problematic position operator r is absent!

In 1993, King-Smith and Vanderbilt suggested [4] that the polarization current j appears in Eq. (7) is nothing but
the Berry-curvature induced adiabatic current we have derived in the context of the Thouless pumping [5]. Let us see
this in more detail in the next section.

II. ZAK PHASE AND THE MODERN THEORY OF ELECTRIC POLARIZATION [2, 6]

What King-Smith and Vanderbilt discovered [4] is the overlooked link between the band topology of dielectrics and
their electric polarization. The important message here is that the electric polarization not only reflects the local
charge density ρ but also the global topology of the band which encoded in the phase of the Bloch wave functions and
thus in the Berry connection.

For the 1D crystal, the Berry-curvature induced adiabatic current can be given by

j(t) = e
∑
n

∫
BZ

dk

2π
Ωk,n(t), (8)

where Ωk,n is the Berry curvature. The chnage of the electric polarization can thus be rewritten as

∆P = e
∑
n

∫ T

0

dt

∫
BZ

dk

2π
Ωk,n(t)

= e
∑
n

∫ 1

0

dλ

∫
BZ

dk

2π
Ωk,n(λ), (9)

where, in the second equation, we explicitly introduced a normalized adiabatic parameter λ(t) with λ(0) = 0 and
λ(T ) = 1. We can thus recognize that the electric polarization is proportional to the Berry phase for which the
parameter space is spanned by λ and k, as for the Thouless pumping, and is not a torus but a cylinder.

Using the Berry connections the Berry curvature Ωk,n(λ) can be expressed as

Ωk,n(λ) =

[
∂
∂k
∂
∂λ

]
×

[
A

(n)
k

A
(n)
λ

]

=
∂A

(n)
λ

∂k
−
∂A

(n)
k

∂λ

= i

(
∂

∂k

〈
uk,n(λ)

∣∣∣∣ ∂∂λ
∣∣∣∣uk,n(λ)〉− ∂

∂λ

〈
uk,n(λ)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(λ)〉) . (10)

Then, the change of the polarization as the control parameter λ changes from 0 to 1 is given by the line integral
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FIG. 1. Path C is starting from (0, 0) → (1, 0) → (1, 2π
a
) → (0, 2π

a
) → (0, 0) in λ-k space.

along the path C shown in Fig. 1:

∆P =
e

2π

∑
n

∫ 1

0

dλ

∫ 2π
a

0

dk

(
∂A

(n)
λ

∂k
−
∂A

(n)
k

∂λ

)

= i
e

2π

∑
n


∫ 1

0

dλ

∫ 2π
a

0

dk
∂

∂k

〈
uk,n(λ)

∣∣∣∣ ∂∂λ
∣∣∣∣uk,n(λ)〉︸ ︷︷ ︸〈

u 2π
a

,n
(λ)

∣∣∣∣ ∂
∂λ

∣∣∣∣u 2π
a

,n
(λ)

〉
−⟨u0,n(λ)| ∂

∂λ |u0,n(λ)⟩

−
∫ 2π

a

0

dk

∫ 1

0

dλ
∂

∂λ

〈
uk,n(λ)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(λ)〉︸ ︷︷ ︸

⟨uk,n(1)| ∂
∂k |uk,n(1)⟩−⟨uk,n(0)| ∂

∂k |uk,n(0)⟩


= −i e

2π

∑
n

(∫ 1

0

dλ

〈
u0,n(λ)

∣∣∣∣ ∂∂λ
∣∣∣∣u0,n(λ)〉+

∫ 2π
a

0

dk

〈
uk,n(1)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(1)〉

+

∫ 0

1

dλ

〈
u 2π

a ,n(λ)

∣∣∣∣ ∂∂λ
∣∣∣∣u 2π

a ,n(λ)

〉
+

∫ 0

2π
a

dk

〈
uk,n(0)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(0)〉

)
. (11)

Now, we exploit the so-called periodic gauge (as opposed to the parallel transport gauge encountered last lecture),

which can be specified by the boundary condition,
∣∣∣ψ 2π

a ,n(λ)
〉
= |ψ0,n(λ)⟩ for the Bloch function, or,

∣∣∣u 2π
a ,n(λ)

〉
= e−i 2π

a x |u0,n(λ)⟩ (12)

for the cell-periodic Bloch function, to obtain

∆P = −i e
2π

∑
n

(∫ 1

0

dλ

〈
u0,n(λ)

∣∣∣∣ ∂∂λ
∣∣∣∣u0,n(λ)〉+

∫ 2π
a

0

dk

〈
uk,n(1)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(1)〉

+

∫ 0

1

dλ

〈
u0,n(λ)e

i 2π
a x

∣∣∣∣ ∂∂λ
∣∣∣∣e−i 2π

a xu0,n(λ)

〉
+

∫ 0

2π
a

dk

〈
uk,n(0)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(0)〉

)

= −i e
2π

∑
n

(∫ 2π
a

0

dk

〈
uk,n(1)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(1)〉+

∫ 0

2π
a

dk

〈
uk,n(0)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(0)〉

)
. (13)

The important point here is that with the periodic gauge the line integral of the Berry connection along the lower red
line in Fig. 1 cancels out the one along the upper red line in Fig. 1. Thus we arrive at the so-called modern theory of
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electric polarization [2, 6]:

∆P ≡ P (1)− P (0)

= − e

2π

∑
n


∫ 2π

a

0

dk

(
i

〈
uk,n(1)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(1)〉)︸ ︷︷ ︸

ϕn(1)

−
∑
n

∫ 0

2π
a

dk

(
i

〈
uk,n(0)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(0)〉)︸ ︷︷ ︸

ϕn(0)

 . (14)

This means that the electric polarization can be obtained by integrating the Berry connection over the Brillouin zone,
which is called the Zak phase [7],

ϕn(λ) =

∫ 2π
a

0

dk

(
i

〈
uk,n(λ)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(λ)〉) . (15)

Roughly speaking we can consider the operator i ∂
∂k as a kind of position operator x. In fact the Zak phase ϕn(λ) is

related to the so-called Wannier center x̄n as

x̄n(λ) =
a

2π
ϕn(λ) =

a

2π

∫ 2π
a

0

dk

(
i

〈
uk,n(λ)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(λ)〉) . (16)

The electric polarization can thus be given by marvelously simple form with the Zak phases ϕn(λ) for the filled band
n:

P (λ) = − e

2π

∑
n

ϕn(λ) (17)

= − e
a

∑
n

x̄n(λ). (18)

Indeed, the final expression is what we expect from the naive guess, P = ex
a in 1D, or,P = er

Vcell
in 3D, as in Eq. (1).

III. SYMMETRY AND ZAK PHASE [2, 6]

When the parameter λ goes circle like 0 → 1 → 0 we find that the situation is the one encountered when analyzing
the Thouless pumping. The relation between the Zak phase ϕn(λ) and the number of charges transported by the n-th
band per one-cycle cn is

cn =
1

2π
(ϕn(0 = 0 → 1 → 0)− ϕn(0)) . (19)

Since cn = Z where Z is any integer we can conclude that the Zak phase ϕn(λ) is only defined up to modulo 2π. This
in turn means the electric polarization P (λ) is also defined up to modulo e, that is,

P (λ) = −e

(∑
n

ϕn(λ)

2π
+ Z

)
. (20)

Now suppose that the 1D crystal that we have been interested in has the spatial symmetry of inversion. The
symmetry constrains the topology of the Bloch wave function and thus constrains the Zak phase. Let us see this
interesting phenomenon. For simplicity, we consider one band problem. Under the spatial inversion, the electric
polarization changes its sign, that is,

P → −P. (21)

However, these two polarization has to have the same physical contents to assume the spatial symmetry of inversion.
This is possible either when P = 0 or when P = −P + e. These cases corresponds to ϕ = 0 or ϕ = π, respectively. We
thus find that the Zak phase for the 1D crystal with the spatial symmetry of inversion only takes 0 or π. Moreover,
the electric polarization is either P = 0 or P = e

2 .
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