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We shall discuss the modern theory of orbital magnetization. This constitutes the first step for
understanding the very interesting topological magneto-electric effect with axion electrodynamics
(not discussing here, though).

I. SURFACE CHARGE AND SURFACE CURRENT [1, 2]

A. Surface charge and electric polarization

From the charge conservation, we have ∫ (
dρ(r)

dt

)
dv =

∫
(∇ · J) dv

=

∫
(J · n) dA. (1)

When we consider the surface region with the surface charge density σsurf we have the total charge of∫ (
dρ(r)

dt

)
dv =

∫ (
dσsurf
dt

)
dA. (2)

This leads to

dσsurf
dt

= J︸︷︷︸
dP

dt

·n, (3)

and thus

σsurf = P · n. (4)

This surface charge density σsurf is thus related to the bulk electric polarization P . Here, the electric polarization P
is given by the Zak phase

ϕn(λ) =

∫ 2π
a

0

dk

(
i

〈
uk,n(λ)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(λ)〉) . (5)

or the Wannier center

x̄n(λ) =
a

2π
ϕn(λ) =

a

2π

∫ 2π
a

0

dk

(
i

〈
uk,n(λ)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(λ)〉) . (6)

for the filled band n; namely

P (λ) = − e

2π

∑
n

ϕn(λ) = − e
a

∑
n

x̄n(λ). (7)
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B. Surface current and orbital magnetization

Let us seek the similar surface-bulk relation for the surface bound current Ksurf . The classical electromagnetism
tells us that the magnetic dipole moment along z-axis m that is produced by a current I flowing in a loop on xy-plane
is given by

m = IA (8)

where A is the area of the loop. The relation can be rewritten in terms of vectors as 0
0
m


︸ ︷︷ ︸
m

= A

 −I sinϕ
I cosϕ

0


︸ ︷︷ ︸

I

×

 cosϕ
sinϕ
0


︸ ︷︷ ︸

n

, (9)

where n =

 cosϕ
sinϕ
0

 is the unit vector normal to the loop. The relation can be inverted to give

 −I sinϕ
I cosϕ

0


︸ ︷︷ ︸

I

=
1

A

 0
0
m


︸ ︷︷ ︸
m

×

 cosϕ
sinϕ
0


︸ ︷︷ ︸

n

. (10)

Let us then consider a ribbon with width of d that is made by extruding the loop we have just considered. The
relation (10) does not change. Dividing both sides of Eq.(10) by d we have

Ksurf =
1

Ad
m× n. (11)

where Ksurf =
I
d is the surface current.

Now consider a magnetized cylinder with thickness of d having the top and bottom surfaces of area A. In this case,
we can expect that

Ksurf = M × n (12)

hold. Here

M =
m

Ad
, (13)

is the magnetization, that is, the magnetic moment per unit volume. As for the typical magnetized materials,
namely, the ferromagnets, the magnetization M is predominantly emerged as a result that macroscopic number of
the localized electron spins align in particular direction (here z-axis). Putting this spin magnetization M spin aside
we shall investigate the orbital magnetization Morb. The orbital magnetization Morb emerged due to the the orbital
degree of freedom of the Bloch electrons has attracted much attentions these days. The surface-bulk relation can thus
be written as

Ksurf = Morb × n. (14)

The next question is how can the orbital magnetization Morb be expressed in terms of microscopic bulk quantities.

II. ORBITAL MAGNETIZATION [2, 3]

A. Real-space expression

Given an isolated atom, the ratio between the orbital magnetic dipole moment morb and the orbital angular
momentum L = x × p is called the gyromagnetic ratio, γs. The magnetic moment can thus be given in terms of x
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and p as

morb = γs︸︷︷︸
−

e

2me

x× p︸︷︷︸
mev

 = −e
2
(x× v) . (15)

Let us imagine that we have a 2D topologically trivial insulating crystal [3] with the area of A, wherein these isolated
atoms form a 2D array. The orbital magnetization Morb would then be written as

Morb = − e

2A

∑
i

(xi × vi) . (16)

The corresponding quantum-mechanical expression is given by

Morb = − e

2A

∑
i

⟨ϕi|(x× v)|ϕi⟩ , (17)

where |ϕi⟩ is the so-called Wannier function that is defined by Fourier-transforming the Bloch function
∣∣ψk〉 =

eik·x ∣∣uk〉, that is,
|ϕi⟩ =

A0

(2π)
2

∫
BZ

d2ke−ik·xi
∣∣ψk〉

=
A0

(2π)
2

∫
BZ

d2ke−ik·(xi−x)
∣∣uk〉 (18)

which is localized at xi, where A0 is the unit-cell area and the integration is performed within the Brillouin zone.
Conversely, the Bloch function

∣∣ψk〉 can be expressed by the Wannier functions |ϕi⟩ as∣∣ψk〉 =∑
i

eik·xi |ϕi⟩ . (19)

Here, we have a dangerous position operator x in Eq. (17). Following Thonhauser et al. [2, 3], let us split Morb in
Eq. (17) into two contributions:

Morb =

(
− e

2A

∑
i

⟨ϕi|((x− x̄i)× v)|ϕi⟩

)
︸ ︷︷ ︸

MLC

+

(
− e

2A

∑
i

⟨ϕi|(x̄i × v)|ϕi⟩

)
︸ ︷︷ ︸

M IC

, (20)

where

x̄i = ⟨ϕi|x|ϕi⟩ =
A0

(2π)
2

∫
BZ

d2k

(
i

〈
uk

∣∣∣∣ ∂∂k
∣∣∣∣uk〉) (21)

is the 2D analog of the Wannier center. Here, MLC can be interpreted as the magnetization arising due to the local
circulation of the electrons within the unit-cell area A0 in the interior bulk region. Using the translational symmetry,
we have

MLC = − e

2 (NA0)

∑
i

⟨ϕi|((x− x̄i)× v)|ϕi⟩

= − e

2A0
⟨ϕ0|((x− x̄0)× v)|ϕ0⟩

= − e

2A0
⟨ϕ0|(x× v)|ϕ0⟩ (22)

since

v̄0 = ⟨ϕ0|v|ϕ0⟩ = 0. (23)
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We can manipulate Eq. (22) a bit further to obtain

MLC = − e

2A0

〈
ϕ0

∣∣∣∣(x×
(
− i

h̄
[x,H]

))∣∣∣∣ϕ0〉
=

ie

2A0h̄
⟨ϕ0|(x× xH)|ϕ0⟩︸ ︷︷ ︸

0

− ie

2A0h̄
⟨ϕ0|(x×Hx)|ϕ0⟩

= − ie

2A0h̄
⟨ϕ0|(x×Hx)|ϕ0⟩ (24)

M IC is, on the other hand, interpreted as the magnetization arising due to the itinerant circulation of the electrons
only at the surface region. While in the interior region,

M IC = − e

2A0

x̄0 × v̄0︸︷︷︸
0

 = 0, (25)

in the surface region, since

v̄s = ⟨ϕs|v|ϕs⟩ (26)

may not necessarily vanish at the surface, we have

M IC = − e

2A

∑
s

(x̄s × v̄s) , (27)

where the sum s runs only over the sites in the surface region.

B. Reciprocal-space expression

Back in the Bloch basis, after some algebra, Eq. (24) becomes

MLC = − e

2h̄
Im

∫
d2k

(2π)
2

〈
∂uk
∂k

∣∣∣∣×Hk

∣∣∣∣∂uk∂k
〉
, (28)

where Hk = e−ik·xHeik·x and Eq. (27) becomes

M IC = − e

2h̄
Im

∫
d2k

(2π)
2Ek

〈
∂uk
∂k

∣∣∣∣×∣∣∣∣∂uk∂k
〉

︸ ︷︷ ︸
Ωk : Berry curvature

, (29)

where Ek =
〈
uk
∣∣H∣∣uk〉 is the band energy. We thus finally arrive at

Morb = MLC +MIC = − e

2h̄
Im

∫
d2k

(2π)
2

〈
∂uk
∂k

∣∣∣∣× (Hk + Ek
)∣∣∣∣∂uk∂k

〉
, (30)

an expression of Morb that contains only bulk quantities!
Unlike the electric polarization P in Eq. (7) which defined modulo e, however, the orbital magnetization Morb in

Eq. (30) is well-defined [2].
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