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Through the following problems, we shall explore the celebrated Su-Schrieffer-Heeger model of
polyacetylene [1].

I. TIGHT-BINDING HAMILTONIAN [2]

For electrons in 1D periodic lattice potential (length: L) the Bloch states diagonalize the Hamitonian H0, that is,

H0 =
∑
kl

ϵkl
â†kl

âkl
, (1)

where âkl
and â†kl

are the annihilation and creation operators for an electron in a Bloch state indexed by the wave

vector kl =
2π
L × l. Let us see this problem in the real space indexed by Rn = a × n, a vector specifying an atomic

site, as opposed to kl. Note that the atomic site separation is a = L
N , where N is the number of the atomic sites

within the length L.
It is helpful to introduce the so-called Wannier states, for which the annihilation and creation operators, ân and

â†n are respectively defined by

ân =
1√
N

∑
kl

eikl·Rn âkl
(2)

â†n =
1√
N

∑
kl

e−ikl·Rn â†kl
. (3)

The inverse of each expression reads

âkl
=

1√
N

∑
n

e−ikl·Rn ân (4)

â†kl
=

1√
N

∑
n

eikl·Rn â†n. (5)

With these expressions the Hamiltonian Eq. (1) becomes

H0 =
1

N

∑
ij

∑
kl

eikl·(Rn−Rm)ϵkl
â†nâm =

∑
nm

â†ntnmâm, (6)

where we have defined the hopping matrix tnm as

tnm =
1

N

∑
kl

ϵkl
eikl·(Rn−Rm). (7)

Equation (6) is called tight-binding Hamiltonian and describes electrons hopping from one lattice site n to the other
m, whose strength is dictated by the hopping matrix element tnm in Eq. (7). You can see that when ϵkl

= const.,
that is, single-particle Hamiltonian H0 merely represents isolated atom and index kl is irrelevant, then tnm ∝ δnm
and there are no hopping. The dispersion ϵkl

̸= const. is thus pertinent to realize the inter-atomic hopping.
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Problem 1� �
By setting

tnm = −tδn,m±1, (8)

show that the tight binding Hamiltonian Eq. (6) can be diagonalized in terms of Bloch states and becomes

H0 =
∑
kl

(−2t cos(kla)) â
†
kl
âkl

. (9)

� �
II. PEIERLS INSTABILITY

Polyacetylene, (CH)x, is the simplest linear conjugated polymer, which can be microscopically modeled as a simple
Hamiltonian proposed by Su, Shrieffer, and Heeger as

HSSH =

N
2∑

n=−N
2

−t (1 + un)
(
â†nân+1 + h.c.

)
, (10)

where

un = (−1)nα. (11)

This Hamiltonian is the variant of H0 given by Eq. (6) in a sense that the original symmetric hopping matrix
tnm = −tδn,m±1 given by Eq. (8) is modulated by the lattice distortion and becomes asymmetric. By distinguishing
the two atomic sites n =odd and n =even and doubling the size of the unit cell, the tight binding Hamiltonian Eq. (10)
can be modified into

HSSH =

N
4∑

n=−N
4

(−t)
{
(1 + α)

(
b̂†nĉn + h.c.

)
+ (1− α)

(
ĉ†nb̂n+1 + h.c.

)}
. (12)

Problem 2� �
(1) Using the expressions

b̂kl
=

1√
N
2

∑
n

e−i2kl·Rn b̂n (13)

ĉkl
=

1√
N
2

∑
n

e−i2kl·Rn ĉn, (14)

and the similar expressions for b̂†kl
and ĉ†kl

, show that the Hamiltonian, Eq. (12), can be given by

HSSH = −t
∑
kl

[
b†kl

, c†kl

] [
0 (1 + α) + (1− α) e2ikla

(1 + α) + (1− α) e2ikla 0

] [
bkl

ckl

]
(15)

(2) By diagonalizing the 2× 2 matrix, show that the energy eigenvalues are

E(kl)± = ±2t
[
1 +

(
α2 − 1

)
sin2(kla)

] 1
2 . (16)� �

As shown in Fig. 1 the energy eigenvalues Ekl
/t show a gap for the asymmetric hopping due to lattice distortion (for

α ̸= 0). It is known that the the distorted lattice system has the lower energy for half-filling (electrons occupy lower
branch) and the lattice without distortion is unstable, the phenomenon known as Peierls instability [2].
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FIG. 1. Energy eigenvalues Ekl/2t given by Eq. (16) as a function of kl. Black dotted line is for symmetric hopping, that is,
no lattice distortion (α = 0); Blue line is for asymmetric hopping due to lattice distortion (α = 0.2).

III. BERRY PHASE AND ELECTRIC POLARIZATION [1–3]

Now let us seek the connection between the SSH model and the Berry phase, the later of which we have learned
in the Lecture. To see this connection, we shall reverse the usual second quantization procedure, that is, from the
second quantized Hamiltonian to the single-particle Hamiltonian. The single-particle Hamiltonian HBerry(R(kl)) can
be found in the second quantized Hamiltonian HSSH given by Eq. (15) as

HSSH =
∑
kl

[
b†kl

, c†kl

]
HBerry(R(kl))

[
bkl

ckl

]
, (17)

where

HBerry(R(kl)) = −t

[
0 (1 + α) + (1− α) e2ikla

(1 + α) + (1− α) e−2ikla 0

]
= R(kl) · σ. (18)

Here, σ =

 σx

σy

σz

 are the Pauli matrices and

R(kl) =

 X(kl)
Y (kl)
Z(kl)

 = −t

 (1 + α) + (1− α) cos(2kla)
− (1− α) sin(2kla)

0

 . (19)

Figure 2 shows the trajectories of R(kk)/(−t) as kl is swept from − π
2a to π

2a for various values of α.
The Berry curvature can then be calculated from the formula [see e.g., Eq. (B11) in the Lecture note 4: Berry

phase and Dirac monopole]:

Ω+(kl) =
i

(E(kl)− − E(kl)−)
2 (⟨+(R(kl))|∇HBerry(R(kl))|−(R(kl))⟩ × ⟨−(R(kl))|∇HBerry(R(kl))|+(R(kl))⟩)

=
i

(E(kl)− − E(kl)−)
2


〈
+(R(kl))

∣∣∣∂HBerry(R(kl))
∂X

∣∣∣−(R(kl))
〉〈

+(R(kl))
∣∣∣∂HBerry(R(kl))

∂Y

∣∣∣−(R(kl))
〉〈

+(R(kl))
∣∣∣∂HBerry(R(kl))

∂Z

∣∣∣−(R(kl))
〉
×


〈
−(R(kl))

∣∣∣∂HBerry(R(kl))
∂X

∣∣∣+(R(kl))
〉〈

−(R(kl))
∣∣∣∂HBerry(R(kl))

∂Y

∣∣∣+(R(kl))
〉〈

−(R(kl))
∣∣∣∂HBerry(R(kl))

∂Z

∣∣∣+(R(kl))
〉


=
i

(E(kl)− − E(kl)−)
2

 ⟨+(R(kl))|σx|−(R(kl))⟩
⟨+(R(kl))|σy|−(R(kl))⟩

0

×

 ⟨−(R(kl))|σx|+(R(kl))⟩
⟨−(R(kl))|σy|+(R(kl))⟩

0

 , (20)

where |±(R(kl))⟩ are the instantaneous eigenstates of HBerry(R(kl)).
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FIG. 2. Trajectory of R(kk)/(−t) (within XY -plane) as kl swept from − π
2a

to π
2a

for various values of α. Black: α = 0.5; Blue:
α = 0.1; Purple: α = −0.1, Red: α = −0.5

Problem 3� �
Following the argument found in Sec. 3 of Berry’s original paper [3] (or, otherwise, lengthy brute-force calculation),
show that the Berry phase (Zak phase) can be given by

γ =

∫∫
C
Ω+(kl) · dS = π (21)

for α < 0, namely, the cases where the XY trajectories C [e.g., the purple and the red circles shown the in Fig. 2]
encircles origin, that is, the degeneracy point, and

γ =

∫∫
C
Ω+(kl) · dS = 0 (22)

for α > 0, namely, the cases where the XY trajectories C [e.g., the black and the blue circles shown in Fig. 2] do
not encircle the origin, that is, the degeneracy point. Here, the integrals are performed over the surfaces enclosing
the XY trajectories C.� �

This suggests that for polyacetylene with lattice distortion of α < 0 there is the electric polarization of e
2 while for

that with α > 0 there is no electric polarization.
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