Report Problems

Koji Usami*
(Dated: November 15, 2021)
Through the following problems, we shall explore graphene and its topological band structure.

I. WANNIER STATES AND TIGHT-BINDING SYSTEM [1]

For electrons in periodic potential the Bloch states diagonalize the single-particle hamitonian H_{0}, that is,

$$
\begin{equation*}
H_{0}=\sum_{\boldsymbol{k}} \epsilon_{k} \hat{a}_{\boldsymbol{k}}^{\dagger} \hat{a}_{\boldsymbol{k}} \tag{1}
\end{equation*}
$$

where $\hat{a}_{\boldsymbol{k}}$ and $\hat{a}_{\boldsymbol{k}}^{\dagger}$ are the annihilation and creation operators for an electron in a Bloch state indexed by the wave vector \boldsymbol{k}. Let us see this problem in the real space indexed by the atomic site \boldsymbol{R}_{i} as opposed to \boldsymbol{k}. To this end, it is helpful to introduce the so-called Wannier states, for which the annihilation and creation operators, \hat{a}_{i} and \hat{a}_{i}^{\dagger} are respectively defined by

$$
\begin{align*}
& \hat{a}_{i}=\frac{1}{\sqrt{N}} \sum_{\boldsymbol{k}} e^{i \boldsymbol{k} \cdot \boldsymbol{R}_{i}} \hat{a}_{\boldsymbol{k}} \tag{2}\\
& \hat{a}_{i}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{\boldsymbol{k}} e^{-i \boldsymbol{k} \cdot \boldsymbol{R}_{i}} \hat{a}_{\boldsymbol{k}}^{\dagger} \tag{3}
\end{align*}
$$

where N is the number of the atomic sites. The inverse of each expression reads

$$
\begin{align*}
& \hat{a}_{\boldsymbol{k}}=\frac{1}{\sqrt{N}} \sum_{i} e^{-i \boldsymbol{k} \cdot \boldsymbol{R}_{i}} \hat{a}_{i} \tag{4}\\
& \hat{a}_{\boldsymbol{k}}^{\dagger}=\frac{1}{\sqrt{N}} \sum_{i} e^{i \boldsymbol{k} \cdot \boldsymbol{R}_{i}} \hat{a}_{i}^{\dagger} \tag{5}
\end{align*}
$$

With these expressions the Hamiltonian Eq. (1) becomes

$$
\begin{equation*}
H_{0}=\frac{1}{N} \sum_{i j} \sum_{\boldsymbol{k}} e^{i \boldsymbol{k} \cdot\left(\boldsymbol{R}_{i}-\boldsymbol{R}_{j}\right)} \epsilon_{k} \hat{a}_{i}^{\dagger} \hat{a}_{j}=\sum_{i j} \hat{a}_{i}^{\dagger} t_{i j} \hat{a}_{j} \tag{6}
\end{equation*}
$$

where we have defined the hopping matrix $t_{i j}$ as

$$
\begin{equation*}
t_{i j}=\frac{1}{N} \sum_{\boldsymbol{k}} \epsilon_{k} e^{i \boldsymbol{k} \cdot\left(\boldsymbol{R}_{i}-\boldsymbol{R}_{j}\right)} \tag{7}
\end{equation*}
$$

Equation (6) is called tight-binding Hamiltonian and describes electrons hopping from one lattice site i to the other j, whose strength is dictated by the hopping matrix element $t_{i j}$ in Eq. (7). You can see that when $\epsilon_{k}=$ const., that is, single-particle Hamiltonian H_{0} merely represents isolated atom and index \boldsymbol{k} is irrelevant, then $t_{i j}=\delta_{i j}$ and there are no hopping. The dispersion $\epsilon_{k} \neq$ const. is thus pertinent to realize the inter-atomic hopping.

II. 2D SQUARE LATTICE - A TOY MODEL [1]

As an concrete example let us take a 2D square lattice with the lattice constant a.

[^0]By setting $t_{i j}=-t$ for i and j being nearest neighbors and zero otherwise, show that the tight binding Hamiltonian Eq. (6) can be diagonalized in terms of Bloch states and becomes

$$
\begin{equation*}
H_{0}=\sum_{k_{x}, k_{y}}\left[-2 t\left(\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)\right)\right] \hat{a}_{k_{x}, k_{y}}^{\dagger} \hat{a}_{k_{x}, k_{y}} . \tag{8}
\end{equation*}
$$

The energy suface in Brillouin zone spanned by k_{x} and k_{y} with $-\frac{\pi}{a} \leq k_{x} \leq \frac{\pi}{a}$ and $-\frac{\pi}{a} \leq k_{y} \leq \frac{\pi}{a}$ is shown in Fig. 1.

FIG. 1. Energy suface $\epsilon / t=-2\left(\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)\right)$ of an electron in the 2D square lattice dipicted in Brillouin zone spanned by k_{x} and k_{y}.

III. 2D HEXAGONAL LATTICE-GRAPHENE [1, 2]

Graphene is a single layer of graphite with 2D hexagonal lattice of carbon atoms. Graphene shows a number of interesting physics which basically originate from its band structure. From each carbon atom, $2 s, 2 p_{x}$, and $2 p_{y}$ orbits hybridize and they form the so-called σ-band as $s p^{2} h y b r i d s$. On the other hand, p_{z} orbits do not participate this hybridization and form the so-called π-band. Usually, the Fermi energy lays in the π-band and most of the interesting properties of graphene can thus be attributed to electrons in the π-band, which show a linear dispersion and behave like 2D Dirac fermions. Hereby we study this peculiar band dispersion with tight-binging approach.

The unit-cell of the graphene contains two atoms and spanned by two vectors

$$
\begin{align*}
& \boldsymbol{a}_{1}=\left(\frac{\sqrt{3}}{2} a, \frac{1}{2} a\right) \tag{9}\\
& \boldsymbol{a}_{2}=\left(\frac{\sqrt{3}}{2} a,-\frac{1}{2} a\right) \tag{10}
\end{align*}
$$

as shown in Fig. 2. By setting $t_{i j}=-t$ for i and j being nearest neighbors and zero otherwise, the monatomic tight-binding Hamiltonian Eq. (6) can be modified into the the bi-atomic nearest neighbor tight-binding Hamiltonian

FIG. 2. 2D hexagonal lattice of carbon atoms. The black and red points show the inequivalent two atomic sites, A-site and B-site, respectively.

$$
\begin{equation*}
H=-t \sum_{\langle i, j\rangle}\left(\hat{a}_{i, j}^{\dagger}\left(b_{i, j}+b_{i+1, j+1}+b_{i+1, j-1}\right)+h . c .\right), \tag{12}
\end{equation*}
$$

where $\hat{a}_{i j}\left(\hat{b}_{i j}\right)$ is the anninilation operator for the electron at (i, j) lattice point of A-site (B-site) and $\hat{a}_{i j}^{\dagger}\left(\hat{b}_{i j}^{\dagger}\right)$ is the corresponding creation operator.

Problem 2

Show that the tight binding Hamiltonian Eq. (12) can be modified into

$$
H=-t \sum_{k_{x}, k_{y}}\left[\hat{a}_{k_{x}, k_{y}}^{\dagger} \hat{b}_{k_{x}, k_{y}}^{\dagger}\right]\left[\begin{array}{cc}
0 & f\left(k_{x}, k_{y}\right) \tag{13}\\
f\left(k_{x}, k_{y}\right)^{*} & 0
\end{array}\right]\left[\begin{array}{l}
\hat{a}_{k_{x}, k_{y}} \\
\hat{b}_{k_{x}, k_{y}}
\end{array}\right]
$$

where

$$
\begin{equation*}
f\left(k_{x}, k_{y}\right)=e^{-i k_{x} \frac{a}{\sqrt{3}}}+2 e^{i k_{x} \frac{a}{2 \sqrt{3}}} \cos \left(\frac{k_{y} a}{2}\right) . \tag{14}
\end{equation*}
$$

By applying the proper unitary transformation, the Hamiltonian Eq. (13) can be diagonalized. The energy surfaces are obtained as

$$
\begin{equation*}
\epsilon_{k} / t= \pm \sqrt{f\left(k_{x}, k_{y}\right) f\left(k_{x}, k_{y}\right)^{*}}= \pm \sqrt{1+4 \cos \left(k_{x} \frac{\sqrt{3} a}{2}\right) \cos \left(\frac{k_{y} a}{2}\right)+4 \cos ^{2}\left(\frac{k_{x} a}{2}\right)} \tag{15}
\end{equation*}
$$

which are shown in Fig. 3.

IV. DIRAC CONE AND DIRAC MONOPOLE [2]

We are now in a position to see the connection between the band structure shown in Fig. 3 and the topology. The 2D hexagonal lattice in real space shown in Fig. 2 can be cast into the 2D hexagonal lattice in reciprocal space, that is, the Brillouin zone of the 2D hexagonal lattice, as shown in Fig. 4. We see that at $K=\left(k_{x}, k_{y}\right)=\frac{2 \pi}{a}\left(0,-\frac{2}{3}\right)$ and $K^{\prime}=\left(k_{x}, k_{y}\right)=\frac{2 \pi}{a}\left(0, \frac{2}{3}\right)$ points in the Fig. 4, the two enery surfaces touch as shown in Fig. 3.

FIG. 3. Energy suface $\epsilon_{k} / t= \pm \sqrt{f\left(k_{x}, k_{y}\right) f\left(k_{x}, k_{y}\right)^{*}}= \pm \sqrt{1+4 \cos \left(k_{x} \frac{\sqrt{3} a}{2}\right) \cos \left(\frac{k_{y} a}{2}\right)+4 \cos ^{2}\left(\frac{k_{x} a}{2}\right)}$ of an electron in the 2D hexagonal lattice dipicted in Brillouin zone spanned by k_{x} and k_{y}.

Problem 3

(1) By expanding Eq. (12) around the K^{\prime} point, where $k_{x}=\tilde{k}_{x}$ and $k_{y}=\frac{4 \pi}{3 a}+\tilde{k}_{y}$, show that the tight binding Hamiltonian Eq. (12) can be approximated as

$$
\begin{align*}
H_{\mathrm{D}}^{\prime} & =-\hbar v \sum_{\tilde{k}_{x}, \tilde{k}_{y}}\left[\hat{a}_{\tilde{k}_{x}, \tilde{k}_{y}}^{\dagger} \hat{b}_{\tilde{k}_{x}, \tilde{k}_{y}}^{\dagger}\right]\left[\begin{array}{cc}
0 & -i \tilde{k}_{x}-\tilde{k}_{y} \\
i \tilde{k}_{x}-\tilde{k}_{y} & 0
\end{array}\right]\left[\begin{array}{l}
\hat{a}_{\tilde{k}_{x}, \tilde{k}_{y}} \\
\hat{b}_{\tilde{k}_{x}, \tilde{k}_{y}}
\end{array}\right] \\
& =-\hbar v \sum_{\tilde{k}_{x}, \tilde{k}_{y}}\left[\hat{a}_{\tilde{k}_{x}, \tilde{k}_{y}}^{\dagger} \hat{b}_{\tilde{k}_{x}, \tilde{k}_{y}}^{\dagger}\right]\left(-\sigma_{x} \tilde{k}_{y}+\sigma_{y} \tilde{k}_{x}\right)\left[\begin{array}{c}
\hat{a}_{\tilde{k}_{x}, \tilde{k}_{y}} \\
\hat{b}_{\tilde{k}_{x}, \tilde{k}_{y}}
\end{array}\right] \tag{16}
\end{align*}
$$

where

$$
\begin{equation*}
v=\frac{\sqrt{3} a t}{2 \hbar} \tag{17}
\end{equation*}
$$

(2) By expanding Eq. (12) around the K point, where $k_{x}=\tilde{k}_{x}$ and $k_{y}=-\frac{4 \pi}{3 a}+\tilde{k}_{y}$, show that the tight binding Hamiltonian Eq. (12) can be approximated as

$$
H_{\mathrm{D}}=-\hbar v \sum_{\tilde{k}_{x}, \tilde{k}_{y}}\left[\hat{a}_{\tilde{k}_{x}, \tilde{k}_{y}}^{\dagger} \hat{b}_{\tilde{k}_{x}, \tilde{k}_{y}}^{\dagger}\right]\left(\sigma_{x} \tilde{k}_{y}+\sigma_{y} \tilde{k}_{x}\right)\left[\begin{array}{l}
\hat{a}_{\tilde{k}_{x}}, \tilde{k}_{y} \tag{18}\\
\hat{b}_{\tilde{k}_{x}, \tilde{k}_{y}}
\end{array}\right]
$$

Now let us seek the connection between electrons at K and K^{\prime} point of graphene and the Dirac monopole, the later of which we have learned in the Lecture. To see the connection, we shall reverse the usual second quantization procedure, that is, from the second quantized Hamiltonian to the single-particle Hamiltonian. Now, the relation

FIG. 4. 2D hexagonal lattice in reciprocal space.
between the single-particle Hamiltonian $\mathcal{H}_{\mathrm{D}}^{\prime}$ and the second quantized Hamilotionian H_{D}^{\prime} in Eq. (16) is [1]

$$
H_{\mathrm{D}}^{\prime}=\sum_{\tilde{k}_{x}, \tilde{k}_{y}}\left[\hat{a}_{\tilde{k}_{x}, \tilde{k}_{y}}^{\dagger} \hat{b}_{\tilde{k}_{x}, \tilde{k}_{y}}^{\dagger}\right] \mathcal{H}_{\mathrm{D}}^{\prime}\left[\begin{array}{l}
\hat{a}_{\tilde{k}_{x}, \tilde{k}_{y}} \tag{19}\\
\hat{b}_{\tilde{k}_{x}, \tilde{k}_{y}}
\end{array}\right]
$$

We thus have

$$
\begin{equation*}
\mathcal{H}_{\mathrm{D}}^{\prime}=-\hbar v\left(-\sigma_{x} \tilde{k}_{y}+\sigma_{y} \tilde{k}_{x}\right) \tag{20}
\end{equation*}
$$

for electron in K^{\prime} point. Let us perform an unitary transformation

$$
\begin{align*}
\mathcal{H}_{\mathrm{D}}^{\prime} \rightarrow \mathcal{H}_{\mathrm{K}}^{\prime} & =e^{-i \frac{\pi}{4} \sigma_{z}} \mathcal{H}_{\mathrm{D}}^{\prime} e^{i \frac{\pi}{4} \sigma_{z}} \\
& =-\hbar v(-\underbrace{e^{-i \frac{\pi}{4} \sigma_{z}} \sigma_{x} e^{i \frac{\pi}{4} \sigma_{z}}}_{\sigma_{y}} \tilde{k}_{y}+\underbrace{e^{-i \frac{\pi}{4} \sigma_{z}} \sigma_{y} e^{i \frac{\pi}{4} \sigma_{z}}}_{-\sigma_{x}} \tilde{k}_{x}) \\
& =\hbar v\left(\sigma_{y} \tilde{k}_{y}+\sigma_{x} \tilde{k}_{x}\right) \\
& =\hbar v \boldsymbol{\sigma} \cdot \tilde{\boldsymbol{k}} \tag{21}
\end{align*}
$$

This Hamiltonian is formally equivalent to that for the massless Dirac particles. The masslessness manifests itself as the linear dispersion, that is, $\mathcal{H}_{\mathrm{K}}^{\prime} \propto \tilde{k}_{i}$ shown in Fig. 3 . The cone around K^{\prime} point suspended by \tilde{k}_{x} and \tilde{k}_{y} is called the Dirac cone.

This Hamiltonian also looks similar to the one we encountered in the Lecture [Eq. (38) in Lecture 4: Berry phase and Dirac monopole], that is,

$$
\begin{equation*}
H=\hbar \gamma \boldsymbol{\sigma} \cdot \boldsymbol{B} \tag{22}
\end{equation*}
$$

Following the argument we have delineated in the Lecture, we can recognize that an electron acquires the Berry phase

$$
\begin{equation*}
\gamma=\pi \tag{23}
\end{equation*}
$$

when going around K^{\prime} point or K point in the Brillouin zone. It can be shown, from the argument of symmetry [3], that the Berry curvature is only finite at $\left(\tilde{k}_{x}, \tilde{k}_{y}\right)=(0,0)$, that is exactly at the K and K^{\prime} points and

$$
\boldsymbol{\Omega}=\left[\begin{array}{c}
0 \tag{24}\\
0 \\
\pi \delta\left(\tilde{k}_{x}, \tilde{k}_{y}\right)
\end{array}\right]
$$

Problem 4

Briefly discuss how the Berry curvature $\boldsymbol{\Omega}$ in Eq. (24) manifests itself in the quantum Hall effect in the high-quality graphene samples $[4,5]$
[1] A. Altland and B. D. Simons, Condensed Matter Field Theory, 2nd ed. (Cambridge University Press, Cambridge, 2010).
[2] T. Ando, J. Phys. Soc. Jan. 74, 777 (2005).
[3] See, e.g., F. D. M. Haldane, Phys. Rev. Lett. 93, 206602 (2004).
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
[5] Y. Zhang, Y. -W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).

[^0]: * usami@qc.rcast.u-tokyo.ac.jp

