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We review the phenomenological theory of superconductivity.

I. FROM SCHRÖDINGER TO LONDON [1]

The Schrödinger equation of a charged particle in an electromagnetic field with a vector potential A as well as a
scalar potential ϕ can be given by

ih̄
∂

∂t
ψ(r, t) = Hψ(r, t)

=
1

2m
(−ih̄∇− qA) (−ih̄∇− qA)ψ + qϕψ (1)

Since the probability density P (r, t) in quantum mechanics is given in terms of the wave function ψ(r, t) by

P (r, t) = ψ∗(r, t)ψ(r, t), (2)

the probability current J(r, t) can be obtained by

∂

∂t
P (r, t) = −∇ · J(r, t), (3)

which leads to

J(r, t) =
1

2

((
−ih̄∇− qA

m
ψ

)∗

ψ + ψ∗
(
−ih̄∇− qA

m
ψ

))
. (4)

Here is the crucial point: we new consider the wave function ψ(r) in Eq. (1) as a macroscopic one by identifying it
as an order parameter of a superconducting metal;

ψ(r, t) =
√
ρ(r)eiθ(r), (5)

where ρ is the charge density and θ is the phase. Equation. (4) is now nothing but the electric current as opposed to
the probability current. The current can be explicitly given in terms of ρ and θ by

J(r) =
h̄

m

(
∇θ(r)− q

h̄
A(r)

)
ρ(r). (6)

Without the first term Eq. (6) is the so-called second London equation [2] [4];

J(r) = − q

m
ρ(r)A(r), (7)

which explains the perfect conductivity as well as the Meissner effect as follows.

II. CONSEQUENCES

A. Perfect conductivity [2]

Taking time derivative of Eq. (7), we have

J̇(r) = −qρ(r)
m

Ȧ(r). (8)
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Since Ȧ(r) = −E(r), we have

J̇(r) =
qρ(r)

m
E(r), (9)

which suggests the perfect conductivity. The situation is analogous to the lossless free mass system:

ṗ︸︷︷︸
m

˙J (r)

= F︸︷︷︸
ρ(r)qE

. (10)

There were, on the other hand, a loss term, we have

ṗ = −1

τ
p+ F , (11)

and thus

J̇(r) = −1

τ
J(r) +

ρ(r)q

m
E, (12)

where τ is the relaxation time [3]. Suppse that the τ is very short, we can set J̇(r) = 0 in Eq. (12). This gives us

J(r) =
ρ(r)q

m
τ︸ ︷︷ ︸

σ

E, (13)

and recovering the standard Ohm’s law within the Drude theory [3].

B. Meissner effect [1]

Let us now analyze the consequence of the London equation (6) upon the magnetic field in a superconductor. Let
us start by writing the Maxwell equation

∇×B(r) = µ0J(r) (14)

in terms of the vecotor potential A(r), that is

∇× (∇×A(r))︸ ︷︷ ︸
B(r)

= µ0J(r). (15)

With the Coulomb gauge ∇ ·A(r) = 0 and using vector identity

∇×∇×A(r) = ∇ (∇ ·A(r))−∇2A(r) (16)

Equation 15 becomes

∇2A(r) = −µ0J(r). (17)

Using the London equation (6) we have a simple equation for A(r):

∇2A(r) = − µ0ρ(r)q

m︸ ︷︷ ︸
1

λL
2

A(r), (18)

where

λL =

√
m

µ0ρ(r)q
(19)

is called the London penetration depth [2, 3]. The solution of Eq. (18) is

A(r) = A0 exp

(
− r

λL

)
. (20)

The same conclusion can be delivered for the magnetic field B(r), that is

B(r) = B0 exp

(
− r

λL

)
, (21)

suggesting the exponential decay of the magnetic field inside the superconductor, i.e., the Meissner effect.
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C. Flux quantization [1]

The existence of the θ term in Eq. (6) produces an even more remarkable phenomenon, flux quantization. Let
us consider a superconducting ring under the magnetic field. Since the superconducting current flows only near the
surface down to the London penetration depth, Eq. (19), the interior current of the ring should be zero. From Eq. (6)
this situation leads to

h̄∇θ(r) = qA(r). (22)

Taking the line integral along the interior of the ring, we have, from the single-valuedness of the wave function,

h̄

∮
∇θ(r) · ds︸ ︷︷ ︸

2πn

= q

∮
A(r) · ds︸ ︷︷ ︸

Φ

, (23)

and reach the conclusion that the flux Φ has to be quantized as

Φ =
2πh̄

q
n (24)

with n being any integers (0,1,2, · · ·) and q turning out to be 2e reflecting the fact that the electrons pairing up as
the Cooper pairs and being condensed in the ground state (BCS state) in the superconducting metals.
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