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We review the classic examples of macroscopic quantum phenomena, which are not the main
concern of the lecture. As examples, we study the phonon concept appeared in investigating the
specific heat of insulators and the flux quantization appeared as a result of the macroscopic wave
function of superconducting metals. The main theme of the lecture is, however, to discuss the second
quantum revolution, after which the macroscopic quantum systems become the controllable objects
and quantum mechanics is needed not only for explaining the phenomena but also for manipulating
the objects at our disposal.

Introduction

A. Phonon concept - specific heat of insulators

1. The law of Dulong and Petit - a classical model of specific heat due to lattice vibrations

Let us begin with considering simple one-dimensional harmonic oscillator. The Hamiltonian can be given by

H =
1

2m
p2 +

1

2
mω2q2, (1)

where m and ω are the mass and the angular frequency of the oscillator, respectively, with mω2 = κ is the spring
constant. q and p are the displacement coordinate and its conjugate momentum of the harmonic oscillator. Since
each of these terms in the Hamiltonian is quadratic the equipartition theorem leads to

(Mean kinetic energy) ≡ K̄ =
1

2m
p̄2 =

1

2
kBT (2)

(Mean potential energy) ≡ V̄ =
1

2
mω2q̄2 =

1

2
kBT, (3)

so that

(Mean total energy) ≡ Ē = K̄ + V̄ =
1

2m
p̄2 +

1

2
mω2q̄2 = kBT. (4)

Thus the specific heat for the one-dimensional harmonic oscillator is

cV =

(
∂Ē

∂T

)
V

= kB. (5)

It is straightforward to extend the above result to three-dimensional harmonic oscillator. The resultant specific heat
is

cV =

(
∂Ē

∂T

)
V

= 3kB. (6)

Next let us consider a simple solid with Avogadro’s number Na of atoms per mole. The simple-minded model of
this solid can be just an ensemble of Na three-dimensional harmonic oscillators with the mean total energy per mole
of

Ē =

3Na∑
i=1

(
1

2m
p̄2i +

1

2
mω2q̄2i

)
= 3NakBT = 3RT (7)
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and the specific heat of

cV =

(
∂Ē

∂T

)
V

= 3NakB = 3R, (8)

where R ≡ NakB is the gas constant. This is nothing but the law of Dulong and Petit. From the two constants kBand
Na the specific heat of the simple-minded solid would be

cV = 3R = 24.94 [J/mol ·K] or (9)

= 5.961 [cal/mol ·K] , (10)

a constant value irrespective of the temperature. This conclusion of Dulong and Petit is in stark contrast to the
experimental fact that the specific heats for many solid state substances fall well below the Dulong-Petit value as the
temperature drops.
A. Einstein, in 1907, proposed a brilliant idea that the discrepancy can be resolved if the then new Planckian energy

quanta concept is applied to the specific heat, the birth of “phonon” concept!

2. Einstein’s specific heat - ensemble of independent quantum harmonic oscillators

Let us quantize the one-dimensional harmonic oscillator first. The Hamiltonian can then be given by

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2, (11)

where p̂ and q̂ are the quantum-mechanical momentum operator and the position operator, respectively. Now we
define the annihilation operator and the creation operator as

â =

√
mω

2h̄

(
q̂ +

i

mω
p̂

)
, (12)

â† =

√
mω

2h̄

(
q̂ − i

mω
p̂

)
, (13)

then, we have

Ĥ = h̄ω

(
ââ† +

1

2

)
(14)

= h̄ω

(
n̂+

1

2

)
. (15)

Thus we succeed in quantizing the harmonic oscillator, which has the discretized energies of En = h̄ω
(
n+ 1

2

)
where

n is the expectation value of the hermitian operator n̂ ≡ â†â. Inspection tells us that the discreteness of the energy
(energy ”quanta”), in fact, demands the well-known commutation relations,

[q̂, p̂] = ih̄, (16)

or [
â, â†

]
= 1, (17)

which means that the position q̂ and the momentum p̂ of harmonic oscillators cannot be precisely assigned although
they can take continuum of expectation values (as opposed to the quantized energy En).
From Eq. (15) the mean total energy of the quantum harmonic oscillator is

Ē =

∞∑
n=0

Ene
−βEn

∞∑
n=0

e−βEn

= − 1

Z

∂Z

∂β
= − ∂

∂β
lnZ = h̄ω

(
1

2
+

1

eβh̄ω − 1

)
, (18)
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where β = 1
kBT and Z is the partition function defined by

Z =
∞∑

n=0

e−βEn = e−
1
2βh̄ω

∞∑
n=0

e−βnh̄ω = e−
1
2βh̄ω

1

1− e−βh̄ω
. (19)

Thus the specific heat for the one-dimensional quantum harmonic oscillator is

cV =

(
∂Ē

∂T

)
V

=

(
∂Ē

∂β

)
V

(
∂β

∂T

)
= − 1

kBT 2

(
∂Ē

∂β

)
V

= − h̄ω

kBT 2

(
− h̄ωeβh̄ω

(eβh̄ω − 1)
2

)
(20)

= kB (βh̄ω)
2 eβh̄ω

(eβh̄ω − 1)
2

It is straightforward to extend the above result to three-dimensional quantum harmonic oscillator. The resultant
specific heat is

cV = 3kB (βh̄ω)
2 eβh̄ω

(eβh̄ω − 1)
2 . (21)

Comparing to the one for the classical harmonic oscillator, Eq. (6), there is extra factor (βh̄ω)
2 eβh̄ω

(eβh̄ω−1)2
, which varies

as the temperature changes.
The Einstein’s model of solid is simply an ensemble of independent Na three-dimensional quantum harmonic

oscillators; thus the mean total energy per mole is

Ē = 3Nah̄ω

(
1

2
+

1

eβh̄ω − 1

)
, (22)

and the specific heat is

cV =

(
∂Ē

∂T

)
V

= 3NakB (βh̄ω)
2 eβh̄ω

(eβh̄ω − 1)
2

= 3R

(
ΘE

T

)2
e

ΘE
T(

e
ΘE
T − 1

)2 . (23)

where ΘE

T ≡ βh̄ω and ΘE is called the Einstein temperature.
In the high temperature limit cV in Eq. (23) approaches the classical Dulong-Petit value, 3R, while in the low

temperature limit cV becomes 3R
(
ΘE

T

)2
e−

ΘE
T , i.e., exponential decrease as T → 0. Experimentally the specific heat

approaches zero more gently than this, that is, cV ∝ T 3 as T → 0.
The discrepancy indeed stems from the fact that in solids atoms (or ions) are rigidly bound to each other so that

Einstein’s independent harmonic oscillator model fails to capture the truth of the reality. Nevertheless, the very
simple Einstein’s quantum model of specific heat helps stimulate the thought that the deviation of the experimentally
measured specific heats from the law of Dulong and Petit would reveal the profound quantum nature of reality.

3. Debye’s specific heat - model of interacting particles

Solid is a system where the interaction between particles (atoms, ions) is sufficiently strong (due to cova-
lent/molecular/ionic bonding) so that they become arranged in a lattice of definite crystal structure (spon-
taneous symmetry breaking). The potential energy of such a system is no longer separable but dependent
on the interrelation between constituent particles’ displacements. If we write the potential energy as V =
V (q1x, q2x, ·, qNax; q1y, · · · , qNay; q1z, · · · , qNaz) the potential energy can be expanded in Taylor’s series as

V = V0 +

Na∑
i=1

∑
α=x,y,z

(
∂V

∂qiα

)
qiα +

1

2

Na∑
i,j=1

∑
α,β=x,y,z

(
∂2V

∂qiα∂qjβ

)
qiαqjβ + · · · , (24)
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where V0 corresponds to the potential energy in the equilibrium configuration of the particles. The second term
corresponds to the force and vanishes at the equilibrium. Omitting the irrelevant V0 in the dynamics of the lattice
vibration and the higher order terms in q than second (the harmonic approximation) the Hamiltonian of the lattice
vibration becomes

Ĥ =
1

2

Na∑
i=1

∑
α=x,y,z

1

2m
p̂2iα +

1

2

Na∑
i,j=1

∑
α,β=x,y,z

Diα,jβ q̂iαq̂jβ . (25)

The complicated potential energy term reflects the fact that the particles interact so that they do not behave like
independent particles, which Einstein tacitly assumes in his model.
It is, however, possible to factorize the Hamiltonian, Eq. (25), into independent quasi-particles’ Hamiltonians. Let

the displacement coordinates (or the quantum-mechanical position operators), q̂iα, be transformed in the form,

q̂iα =

3Na∑
r=1

Biα,rûr. (26)

A proper choice of the matrix Biα,r leads to

Ĥ =

3Na∑
r=1

(
1

2
m ˙̂u

2

r +
1

2
mω2

r û
2
r

)
. (27)

The new variables ûr is called the “normal coordinates” of the system of the interacting particles. The form of
the Hamiltonian, Eq. (27), is identical to Eq. (7), i.e., 3N independent harmonic oscillators, but having a varying
normal-mode angular frequency ωr for each ûr. The mean total energy per mole in Einstein model, Eq. (22), is then
modified into

Ē =

3Na∑
r=1

h̄ωr

(
1

2
+

1

eβh̄ωr − 1

)
. (28)

As we shall learn next week, the low frequency limit (or long wavelength limit, or elastic continuum limit) we have
a linear dispersion relation ω = csk between the normal-mode angular frequency ω and wave vector k, where cs is an

“effective” sound velocity. In this elastic continuum limit the identity,
3Na∑
r=1

= 3V
∫

dk3

(2π)3 , can be used and the mean

total energy, Eq. (28), can then be rewritten as an integral form;

Ē = 3V

∫
dk3

(2π)3
h̄ω

(
1

2
+

1

eβh̄ω − 1

)
= 3V

∫ kD

0

4πk2dk

(2π)3
h̄ω

(
1

2
+

1

eβh̄ω − 1

)
=

∫ ωD

0

3V

2π2

ω2dω

c3s
h̄ω

(
1

2
+

1

eβh̄ω − 1

)
, (29)

where the last step we used the assumed dispersion relation, ω = csk. Here ωD is called the Debye angular frequency
and defined so as to yield the correct total number of 3Na normal modes, i.e.,∫ ωD

0

3V

2π2

ω2dω

c3s
= 3V

∫
dk3

(2π)3
=

3Na∑
r=1

= 3Na, (30)

which leads to

V

2π2c3s
ω3
D = 3Na (31)

or

ωD = cs

(
6π2Na

V

)
. (32)
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TABLE I: Specific heats -Classical / Quantum theories

Radiation (Boson) Lattice vibration (Boson) Free electron (Fermion)

Number of degrees of freedom Infinite Limited by Debye temperature Limited by Fermi temperature

Classical Theory Rayleigh-Jeans Dulong-Petit Drude

Quantum Theory Planck/Stefan-Boltzmann Einstein/Debye Sommerfeld

Einstein’s specific heat, Eq. (23), is accordingly modified into

cV =

(
∂Ē

∂T

)
V

=
3V

2π2

1

c3s

∫ ωD

0

h̄2ω4eβh̄ω

(eβh̄ω − 1)
2

1

kBT 2
dω

= kB
3V

2π2

1

c3s

∫ ωD

0

(βh̄ω)2eβh̄ω

(eβh̄ω − 1)
2 ω

2dω

= kB
3V

2π2(csβh̄)3

∫ βh̄ωD

0

x4ex

(ex − 1)
2 dx, (33)

where x = βh̄ω. Using V = 6π2Na

(
cs
ωD

)3
, which deduced from Eq. (32), Debye’s specific heat can be expressed in

the similar form to Eq. (23); that is,

cV = 3NakB
3

(βh̄ωD)3

∫ βh̄ωD

0

x4ex

(ex − 1)
2 dx

= 3R
3(

ΘD

T

)3 ∫ ΘD
T

0

x4ex

(ex − 1)
2 dx, (34)

where ΘD

T ≡ βh̄ω and ΘD is called the Debye temperature.
In the high temperature limit cV in Eq. (33) approaches the classical Dulong-Petit value, 3R, like the Einstein

model. In the low temperature limit, however, upper limit of the integral ΘD

T can be replaced by ∞ so that the

integral becomes constant (a mathematical formula says it is 4π4

15 ). Thus Debye’s specific heat at low temperature
limit is

cV = 3R
4π2

5

(
T

ΘD

)3

. (35)

which agrees with the experimentally observed behavior of specific heats, that is, cV ∝ T 3 as T → 0,

4. Einstein/Debye, Planck, Sommerfeld, · · ·

We have studied the models of specific heat due to lattice vibration and learned that to explain the measured specific
heats the Planckian energy quanta concept, that is, phonons, has to be introduced. The seemingly dull activity of
investigating heat capacities indeed reveals a deep and beautiful quantum nature of physics! It is thus worth to further
explore other specific heats. The table A 4 summarizes the classical and quantum theories of specific heats.

B. Flux quantization -superconductivity [5]

The Schrödinger equation of a charged particle in an electromagnetic field A and ϕ can be given by

ih̄
∂

∂t
ψ(r, t) = Hψ(r, t)

=
1

2m
(−ih̄∇− qA) (−ih̄∇− qA)ψ + qϕψ (36)
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Since the probability density P (r, t) in quantum mechanics is given in terms of the wave function ψ(r, t) by

P (r, t) = ψ∗(r, t)ψ(r, t), (37)

the probability current J(r, t) can be obtained by

∂

∂t
P (r, t) = −∇ · J(r, t), (38)

which leads to

J(r, t) =
1

2

((
−ih̄∇− qA

m
ψ

)∗

ψ + ψ∗
(
−ih̄∇− qA

m
ψ

))
. (39)

We new consider the wave function ψ(r) in Eq. (36) as a macroscopic one by identifying it as an order parameter
of a superconducting metal;

ψ(r, t) =
√
ρ(r)eiθ(r), (40)

where ρ is the charge density and θ is the phase. Equation. (39) is then nothing but the simpler form of the Ginzburg-
Landau equation, which can be explicitly given in terms of ρ and θ by

J(r) =
h̄

m

(
∇θ(r)− q

h̄
A(r)

)
ρ(r). (41)

Without the first term the Eq. (41) would be the London equation;

J(r) =
q

m
ρ(r)A(r), (42)

which explains the perfect conductivity as well as the Meissner effect.
The existence of the θ term in Eq. (41) produces an even more remarkable phenomenon, flux quantization. Let

us consider a superconducting ring under the magnetic field. Since the superconducting current flows only near the
surface down to the London penetration depth 1

λ , where

λ =

√
q

ϵ0c2m
ρ(r), (43)

the interior current of the ring should be zero. From Eq. (41) this situation leads to

h̄∇θ(r) = qA(r). (44)

Taking the line integral along the interior of the ring, we have, from the single-valuedness of the wave function,

h̄

∮
∇θ(r) · ds︸ ︷︷ ︸

2πn

= q

∮
A(r) · ds︸ ︷︷ ︸

Φ

, (45)

and reach the conclusion that the flux Φ has to be quantized as

Φ =
2πh̄

q
n (46)

with n being any integers (0,1,2, · · ·) and q turning out to be 2e reflecting the fact that the electrons pairing up as
the Cooper pairs and being condensed in the ground state (BCS state) in the superconducting metals.
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1. Harmonic oscillators, coupled harmonic oscillators, and boson fields [2014/12/08]

2. Damped harmonic oscillators [2014/12/15]

3. Cavity cooling [2014/12/22]

4. Two level systems [2015/01/05]

5. Cavity QED and circuit QED [2015/01/19]

6. Hybrid quantum systems [2015/01/26]
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