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We first study why harmonic oscillators are so ubiquitous and see that not only a point mass in a
harmonic potential but also an LC circuit as well as the electromagnetic wave in a cavity behave like
a harmonic oscillator. Second, we learn an important idea of normal modes to deal with coupled
harmonic oscillators. Third, taking the continuum limit we study that a (1+1)-dimensional boson
field is emerged from N coupled (0+1)-dimensional harmonic oscillators.

I. HARMONIC OSCILLATORS, COUPLED HARMONIC OSCILLATORS, AND BOSON FIELDS

A. Harmonic oscillators

1. Point mass in a harmonic potential

Let us begin by considering a point mass with mass m and coordinate x situated in a potential U(x). Suppose
that the mass is oscillating with small amplitude around the equilibrium position x0. Then the potential energy of
the mass can be Taylor-expanded around x0:

U(x) = U(x0) +
∂U(x0)

∂x
x+

1

2

∂2U(x0)

∂x2
x2. (1)

Since the force, F = ∂U(x0)
∂x , should be zero in the equilibrium position, neglecting the potential offset U(x0) we have

U(x) =
1

2

∂2U(x0)

∂x2︸ ︷︷ ︸
k

x2. (2)

This suggests that any potential can be considered as a harmonic potential when we are interested in the small motion
in the vicinity of the equilibrium position.
With the kinetic part K = 1

2mẋ2 we have the standard Lagrangian for the harmonic oscillator:

L(x, ẋ) = K(ẋ)− U(x) =
1

2
mẋ2 − 1

2
kx2. (3)

The motion of the mass from time t1 to t2 can be determined so as to minimize the action integral

I =

t2∫
t1

L(x, ẋ)dt. (4)

The minimum of I can be obtained by a variational principle (Hamilton’s principle), which leads to the Euler-Lagrange
equation of motion:

d

dt

(
∂L(x, ẋ)

∂ẋ

)
− ∂L(x, ẋ)

∂x
= 0, (5)

that, in turn, is Newton’s second law:

mẍ− kx = 0. (6)
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In the formal procedure the conjugate momentum, p, can then be obtained by

p =
∂L(x, ẋ)

∂ẋ
= mẋ. (7)

We have thus the Hamiltonian H(x, p) from the Legendre transformation:

H(x, p) = ẋp− L(x, ẋ) =
1

2m
p2 +

1

2
kx2. (8)

The mean value of energy H̄(x, p) in thermal equilibrium can be given by

H̄(x, p) =

∞∫
−∞

dxdpH(x, p)e−βH(x,p)

∞∫
−∞

dxdpe−βH(x,p)

= − ∂

∂β
ln

 ∞∫
−∞

dxdpe−βH(x,p)


=

1

β
= kBT. (9)

We can promote x and p to the quantum-mechanical operators by imposing the commutation relation,

[x̂, p̂] = ih̄. (10)

Let the annihilation and creation operators be

â =

√
mω

2h̄

(
x̂+

i

mω
p̂

)
(11)

â† =

√
mω

2h̄

(
x̂− i

mω
p̂

)
, (12)

respectively, where ω =
√

k
m . The Hamiltonian Eq. (8) can then be written as

Ĥ(x̂, p̂) =
1

2m
p̂2 +

1

2
mω2x̂2

= h̄ω

(
â†â︸︷︷︸
n̂

+
1

2

)
. (13)

The mean value of energy ⟨Ĥ(x̂, p̂)⟩ becomes

⟨Ĥ(x̂, p̂)⟩ = h̄ω

(
⟨n̂⟩+ 1

2

)
, (14)

where

⟨n⟩ = 1

e
h̄ω
kBT − 1

, (15)

which in high temperature limit becomes ⟨n⟩ → kBT
h̄ω as in Eq. (9).

2. LC circuit

Q-representation
An LC circuit can be viewed as a harmonic oscillator, too. Replacing the coordinate x by the charge Q, the mass m
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by the inductance L0, and the spring constant k by the inverse of capacitance C0, we have the Lagrangian for the LC
circuit:

L(Q, Q̇) =
1

2
L0Q̇

2 − 1

2C0
Q2. (16)

The first term is the inductive energy and the second is the charging energy. The conjugate momentum is

∂L(Q, Q̇)

∂Q̇
= L0Q̇ = φ, (17)

which is identified as the flux. The Hamiltonian is thus

H(Q,φ) = Q̇φ− L(Q, Q̇) =
1

2L0
φ2 +

1

2C0
Q2

=
1

2L0
φ2 +

1

2
L0ω

2Q2, (18)

where ω = 1√
L0C0

.

The commutation relation:

[Q,φ] = ih̄ (19)

Let the annihilation and creation operators be

b̂ =

√
L0ω

2h̄

(
Q̂+

i

L0ω
φ̂

)
(20)

b̂† =

√
L0ω

2h̄

(
Q̂− i

L0ω
φ̂

)
. (21)

The Hamiltonian Eq. (18) can then be written as

Ĥ(Q̂, φ̂) =
1

2L0
φ̂2 +

1

2
L0ω

2Q̂2

= h̄ω

(
b̂†b̂+

1

2

)
. (22)

φ-representation
We can equally use the flux φ as the coordinate of the LC circuit system, which is more relevant when we deal with
a transmission line. Then, the Lagrangian is a function of φ and φ̇, and is given by

L(φ, φ̇) =
1

2
C0φ̇

2 − 1

2L0
φ2, (23)

where the roles of C0 and L−1
0 are the mass and the spring constant, respectively, and are switched from the first

case. The first term is then the charging energy and the second is the inductive energy. The conjugate momentum
becomes

∂L(φ, φ̇)

∂φ̇
= C0φ̇. (24)

Since φ̇ = L0İ = V (Faraday’s law of induction) the conjugate momentum of the flux φ is indeed the charge:

C0φ̇ = C0V = Q. (25)

Consequently, the Hamiltonian is

H(φ,Q) = φ̇Q− L(φ, φ̇) =
1

2C0
Q2 +

1

2L0
φ2

=
1

2C0
Q2 +

1

2
C0ω

2φ2. (26)
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The commutation relation:

[φ,Q] = ih̄ (27)

Let the annihilation and creation operators be

ĉ =

√
C0ω

2h̄

(
φ̂+

i

C0ω
Q̂

)
(28)

ĉ† =

√
C0ω

2h̄

(
φ̂− i

C0ω
Q̂

)
. (29)

The Hamiltonian Eq. (26) can then be written as

Ĥ(φ̂, Q̂) =
1

2C0
Q̂2 +

1

2
C0ω

2φ̂2

= h̄ω

(
ĉ†ĉ+

1

2

)
. (30)

3. Electromagnetic field in a cavity [1, 2]

The same line of argument can be employed to deal with the electromagnetic field in a cavity. Maxwell’s equations
(first order differential equations) tell us that there are 4 independent degrees of freedom out of apparent 6 degrees
of freedom {E,B}; namely

{E⊥,B⊥}, (31)

i.e., the transverse components of electric and magnetic fields since the longitudinal components {E∥,B∥} can be
fixed by the static equations

∇ ·E =
ρ

ϵ0
(32)

∇ ·B = 0. (33)

To canonically quantize the electromagnetic field the potentials {A, ϕ} instead of the field {E⊥,B⊥} have to be
employed since the Euler-Lagrange equations are the second order differential equations. There are then 8 degrees of
freedom, {A, ϕ, Ȧ, ϕ̇}. The velocity of scalar potential ϕ̇ does not appear in the standard Lagrangian [1] and thus 2

degrees of freedom {ϕ, ϕ̇} out of 8 can be eliminated as the non-dynamic variables. We could further eliminate the

longitudinal 2 components {A∥, Ȧ∥} from the 6 degrees of freedom {A, Ȧ} by fixing the gauge (Coulomb gauge). In

the Coulomb gauge we have only the transverse components of the vector potential, that is, {A⊥, Ȧ⊥}, which fit the
above fact that there are only 4 independent degrees of freedom. To simplify the notation “ ⊥ ” will be henceforth
omitted. The free field Lagrangian can then be given by [1]

L =

∫
dV L(A, Ȧ) (34)

with the Lagrangian density of

L(A, Ȧ) =
ϵ0
2

(
Ȧ

2 − c2 (∇×A)
2
)
, (35)

The momentum conjugate with the variable Ai with i = x, y, z is given by

Πi =

(
∂L
∂Ȧi

)∗

= ϵ0Ȧi. (36)

The free field Hamiltonian in the Coulomb gauge can then be given by [1]

HR =
ϵ0
2

∫
cavity

dV


(
Π(r)

ϵ0

)2

︸ ︷︷ ︸
E⊥(r)2

+ c2 (∇×A(r))
2︸ ︷︷ ︸

B⊥(r)2

 . (37)
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Point mass LC (Q-rep.) LC (φ-rep.) EM cavity mode

Mass m L0 C0 ϵ0

Spring const. k 1
C0

1
L0

1
µ0

Ang. freq. ω =
√

k
m

ω = 1√
C0L0

ω = 1√
C0L0

ωk = ck

Position var. x Q φ Ak

Momentum var. p φ Q Πk

In reciprocal space Maxwell’s equations are strictly local, so is the Hamiltonian density, which leads to

HR =
∑
k>0

∑
λ=1,2

ϵ0
2

Π†
λ,k
ϵ0

·
Π

λ,k
ϵ0

+ c2k2
(
A†

λ,k
·A

λ,k

)
=
∑
k

Hk (38)

where Hk is the Hamiltonian for a single mode with the index k, which has the wave vector k and polarization λ:

Hk =
1

2ϵ0
Π†

k ·Πk︸ ︷︷ ︸
kinetic part

+
1

2
ϵ0ω

2
kA

†
k ·Ak︸ ︷︷ ︸

potential part

, (39)

where ωk = ck. The form of Eq. (39) is quite analogous to the Hamiltonian for harmonic oscillators appeared in
Eqs. (8), (18) and (26). In this sense we can consider the single-mode free electromagnetic field in the Coulomb gauge
(in reciprocal space) as a harmonic oscillator with the position variable A(ω), the momentum variable Π(ω), and the
mass ϵ0 .
The commutation relation:

[Ak,Πk′ ] = ih̄δk,k′ (40)

With the annihilation and creation operators

d̂k =

√
ϵ0ωk

2h̄

(
Âk +

i

ϵ0ωk
Π̂k

)
(41)

d̂†k =

√
ϵ0ωk

2h̄

(
Â†

k − i

ϵ0ωk
Π̂†

k

)
, (42)

the Hamiltonian Eq. (39) can then be rewritten as

Hk = h̄ωk

(
d̂†kd̂k +

1

2

)
. (43)

B. Coupled harmonic oscillators

1. LC-mechanical oscillator coupling

Let us consider first the situation in which a metallic membrane oscillator with the angular frequency of ωm is
capacitively coupled to a LC circuit with the angular frequency of ωLC . The coupled system’s potential can then
be given by H(x, q), where x is the membrane displacement and q is the charge in the capacitor of the LC circuit.
Suppose that with certain external voltage the equilibrium position is x = X0, and the equilibrium charge is q = Q0.
Then, around the equilibrium point, the potential can be written as

H(x, q) = H(X0, Q0) + (
∂H

∂x
x̂+

∂H

∂q
q̂) + (

1

2

∂2H

∂x2
x̂2 +

1

2

∂2H

∂q2
q̂2 +

∂2H

∂x∂q
x̂q̂), (44)
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with x = X0+ x̂, q = Q0+ q̂. The linear terms in Eq. (44), however, vanish becasue of the definition of the equilibrium
condition ∂H

∂x |x=X0
= 0 and ∂H

∂q |q=Q0
= 0. Neglecting the equilibrium potential energy H(X0, Q0), we have

Ĥ(x̂, q̂) =
1

2
mωmx̂2 +

1

2C
q̂2 +Gx̂q̂, (45)

where ∂2H
∂x2 |x=X0 = k = mω2

m, ∂2H
∂q2 |q=Q0 = 1

C , and ∂2H
∂x∂q |x=X0,q=Q0 = G.

By adding the kinetic energy parts, 1
2mp2 = 1

2m(dxdt )
2 for mechanics and 1

2Lϕ
2 = 1

2L(
dq
dt )

2 for LC-circuit, we have
the Hamiltonian,

Ĥ =
1

2m
p̂2 +

1

2
mωmx̂2︸ ︷︷ ︸

mechanics

+
1

2L
ϕ̂2 +

1

2C
q̂2︸ ︷︷ ︸

LC

+ Gx̂q̂︸︷︷︸
coupling

. (46)

The Hamiltonian Eq. (46) can be rewritten as

Ĥ =
1

2m
p̂2 +

1

2
mωmx̂2 +

1

2L
ϕ̂2 +

1

2
LωLC q̂

2 +Gx̂q̂

= h̄ωm

(
â†â+

1

2

)
+ h̄ωLC

(
b̂†b̂+

1

2

)
+G

(√
h̄

2mωm

(
â† + â

))(√ h̄

2LωLC

(
b̂† + b̂

))

= h̄ωm

(
â†â+

1

2

)
+ h̄ωLC

(
b̂†b̂+

1

2

)
+

h̄

2

G
√
mωm

√
LωLC︸ ︷︷ ︸

g

(
â† + â

) (
b̂† + b̂

)
. (47)

Using the rotating-wave approximation which neglect rapidly oscillating terms âb̂ and â†b̂† in the last term in Eq. (47)
we have the canonical Hamiltonian for the coupled oscillator system:

Ĥ = h̄ωmâ†â+ h̄ωLC b̂
†b̂+

h̄

2
g
(
â†b̂+ b̂†â

)
. (48)

Here the vacuum energy terms are omitted since the energy can be offset arbitrary.
Let us analyze the energy level structure for the coupled system. First, suppose that the two oscillators are resonant,

that is, ωm = ωLC = ω. We then easily guess that the normal modes, which diagonalize the Hamiltonian Eq. (48),
are

ĉ =
1√
2

(
â− b̂

)
(49)

d̂ =
1√
2

(
â+ b̂

)
. (50)

With these normal mode operators the Hamiltonian can be indeed rewritten in a diagonal form as

Ĥ =

(
h̄ω − h̄g

2

)
ĉ†ĉ+

(
h̄ω +

h̄g

2

)
d̂†d̂. (51)

The eigen-energies are shifted from the originally degenerate h̄ω by h̄g, which called normal mode splitting.
Next, let us consider the situation where the mechanical and LC oscillators have different resonance angular fre-

quencies, ωm and ωLC = ωm +∆, respectively. The normal modes in this case become

ĉ = cos θ â− sin θ b̂ (52)

d̂ = sin θ â+ cos θ b̂, (53)

where the mixing angle θ is defined by

cot 2θ =
∆

ω
. (54)

The resultant diagonalized Hamiltonian is

Ĥ =

h̄ωm +
h̄∆

2︸ ︷︷ ︸
1
2 (ωm+ωLC)

− h̄g

2

1

sin 2θ

 ĉ†ĉ+

h̄ωm +
h̄∆

2︸ ︷︷ ︸
1
2 (ωm+ωLC)

+
h̄g

2

1

sin 2θ

 d̂†d̂. (55)
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2. 1D atomic chain -phonon modes [3]

Let us consider one-dimensional monatomic atomic chain with the periodic (Born-von Karman) boundary condition,
q(Naa) = q(0), where a is the inter-atomic distance. The potential energy of an atom in the chain is now dependent
on the configurations of the nearest-neighbor atoms and the total potential energy is

V =
1

2
κ

Na∑
n=1

(q(na)− q([n+ 1]a))
2
, (56)

where we assume that the neighboring atoms interact with the spring constant of κ. The equations of motion for the
coordinates {q(a), · · · , q(Naa)} are coupled equations, i.e.,

mq̈(na) = − ∂V

∂q(na)

= −κ (2q(na)− q([n− 1]a)− q([n+ 1]a)) . (57)

It is again possible to diagonalize the potential energy, Eq. (56) into independent quasi-particles’ potential energies by
linear transformation of the coordinates and thus by defining the normal modes (phonon modes). Taking advantage of
the periodicity due to the periodic boundary condition (q(Naa) = q(0)) we can employ a type of Fourier transformation
as the required transformation, that is,

q(na) =
1√
Na

∑
kl

eiklnaukl
, (58)

where kl =
2π
Naa

l with l = 0,±1,±2, · · · , Na

2 .
In terms of the normal coordinates ukl

, the kinetic energy becomes

K =
1

2Na

∑
na

∑
kl

∑
kl′

mu̇kl
u̇kl′ e

i(kl+kl′ )na

=
m

2

∑
kl

u̇kl
u̇−kl

, (59)

and the potential energy Eq. (56) becomes

V =
κ

2Na

∑
na

∑
kl

∑
kl′

ukl
ukl′ e

iklna
(
eikla − 1

)
eik′lna

(
eikl′a − 1

)
=

κ

2

∑
kl

2 (1− cos(kla))ukl
u−kl

, (60)

where we used ∑
na

ei(kl−kl′ )na = Naδklkl′ . (61)

Since the Lagrangian can be given by

L =
m

2

∑
kl

u̇kl
u̇−kl

− κ

2

∑
kl

2 (1− cos(kla))ukl
u−kl

, (62)

the canonical momenta are systematically deduced, i.e.,

pkl
=

∂L

∂u̇kl

= mu̇−kl
(63)

p−kl
=

∂L

∂u̇−kl

= mu̇kl
. (64)

In terms of these new coordinates the Hamiltonian becomes

H =
1

2m

∑
kl

pkl
p−kl

+ κ
∑
kl

(1− cos(kla))ukl
u−kl

. (65)
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The Hamiltonian Eq. (65) is still not in the desired form because of the terms contain both kl and −kl, which stems

from the fact that {ukl
, pkl

} are not hermitian but u†
kl

= u−kl
and p†kl

= p−kl
. We can rectify this situation by

introducing manifestly hermitian coordinates (standing wave solutions)

u
(c)
kl

=
1√
2
(ukl

+ u−kl
) =

1√
2

(
ukl

+ u†
kl

)
(66)

u
(s)
kl

=
1√
2i

(ukl
− u−kl

) =
1√
2i

(
ukl

− u†
kl

)
, (67)

and their respective canonical momenta

p
(c)
kl

= mu̇
(c)
kl

=
1√
2
(pkl

+ p−kl
) =

1√
2

(
pkl

+ p†kl

)
(68)

p
(s)
kl

= mu̇
(s)
kl

=
1√
2i

(pkl
− p−kl

) =
1√
2i

(
pkl

− p†kl

)
. (69)

Note that for new coordinates and momenta kl runs over only positive values up to Na

2 . With these coordinates the
Hamiltonian Eq. (65) becomes a sum of the Hamiltonians for the Na independent harmonic oscillators;

H =

′∑
kl

(
1

2m
p
(c) 2
kl

+
1

2
mω2

kl
u
(c) 2
kl

)
+

′∑
kl

(
1

2m
p
(s) 2
kl

+
1

2
mω2

kl
u
(s) 2
kl

)
, (70)

where kl =
2π
Naa

l with l = 0, 1, 2, · · · , Na

2 and ωkl
is the doubly-degenerate eigen angular frequency defined as

ωkl
=

√
2κ (1− cos(kla))

m
= 2

√
κ

m
sin(

kla

2
). (71)

Note that the relation between the eigen angular frequency ω (energy) and the wave number k (momentum) is
generally called the dispersion relation. We have now Na solutions of eigen energies {h̄ωkl

}, and the mean total
energy per mole is

Ē = 2

Na
2∑

l=1

h̄ωkl

(
1

2
+

1

eβh̄ωkl − 1

)
. (72)

For an atomic chain made up of two atoms, the two eigen angular frequencies are

ωk0 = 0 (73)

ωk1 = 2

√
κ

m
, (74)

which reproduce the aforementioned normal mode splitting.

C. Boson fields

1. 1D atomic chain -continuum limit [3]

Suppose that a ≪ 1, then

q([n+ 1]a)− q(na) ≡ q(xn + a)− q(xn) =
∂q(xn + a)

∂x
a (75)

and

q([n]a)− q([n− 1]a) ≡ q(xn)− q(xn − a) =
∂q(xn)

∂x
a, (76)
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thus

2q(na)− q([n− 1]a)− q([n+ 1]a) ≡ (q(xn)− q(xn − a))− (q(xn + a)− q(xn))

= −
(
∂q(xn + a)

∂x
− ∂q(xn)

∂x

)
a

= −
(
∂2q(xn + a)

∂x2

)
a2. (77)

Plugging this in Eq. (57) the equation of motion for q(x) in the continuum limit can be written as

mq̈(x) = κ

(
∂2q(x)

∂x2

)
a2, (78)

or rather (
1

v2s

∂2

∂t2
− ∂2

∂x2

)
q(x, t) = 0, (79)

that is, a (1+1)-dimensional boson field equation with the velocity,

vs =

√
κa2

m
=

√
κa(
m
a

) =

√
c11
ρ

, (80)

where c11 = K + 4
3µ = κa and ρ = m

a are the elastic constant (K being the bulk modulus and µ being the shear
modulus) and the mass density of the chain. This wave equation is essentially for the longitudinal acoustic phonon
mode. For the transverse acoustic phonon mode, the velocity becomes

vsT =

√
κTa2

m
=

√
c12
ρ

=

√
µ

ρ
. (81)

The dispersion relation in the continuum limit is linear:

ωk = vsk. (82)

We see that in the continuum limit, a → 0, Na → ∞, the displacement field q(x, t) is emerged from the discrete
atomic chain. Note that x is now the index as opposed to the coordinate. From the view point of the field theory the
above point mass equation, Eq. (6) is in fact (0+1)-dimensional boson field equation.
As in Eq. (58) the (0+1)-dimensional coordinate is

qn(t) =
1√
Na

∑
kl

eikl(na)ukl
(t), (83)

and the canonical momentum is

pn(t) =
1√
Na

∑
kl

e−ikl(na)pkl
(t). (84)

The commutation relations are

[qn(t), pn′(t)] = ih̄δn,n′ . (85)

for the real space operators and [
ukl

(t), pkl′ (t)
]
= ih̄δkl,kl′ (86)

for the reciprocal space operators.
The (1+1)-dimensional operators are defined, on the other hand, by

q(x, t) = lim
a→0

Na→∞

qn(t)√
a

= lim
a→0

Na→∞

1√
Naa

∑
k

uk(t)e
ikx =

1√
L

∑
k

uk(t)e
ikx (87)
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and

p(x, t) = lim
a→0

Na→∞

pn(t)√
a

= lim
a→0

Na→∞

1√
Naa

∑
k

pk(t)e
−ikx =

1√
L

∑
k

pk(t)e
−ikx. (88)

Note that the factor 1√
a

in introduced in each definition in order to make sense when the limit operation a →
0, Na → ∞ with Naa = L finite is performed on the original (0+1)-dimensional forms in Eqs. (83) and (84). The
Fourier-transforms are then properly defined with the periodic boundary condition over the length L

uk(t) =
1√
L

L
2∫

−L
2

dxq(x, t)e−ikx (89)

and

pk(t) =
1√
L

L
2∫

−L
2

dxp(x, t)eikx. (90)

The commutation relations are

[q(x, t), p(x′, t)] = ih̄δ(x− x′) (91)

for the real space operators and

[uk, pk′ ] = ih̄δk,k′ (92)

for the reciprocal space operators.
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