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We study an open quantum system in which a (macroscopic) harmonic oscillator is coupled to an
environment that is modeled as a continuum boson field. We shall learn that the quantum noise
spectrum of a resister (Ohmic noise) is asymmetric in frequency because of the non-commutativity
of the Boson field operators and then the quantum dissipation-fluctuation theorem is presented.

II. DAMPED HARMONIC OSCILLATORS

A. Quantization of environment

We will start with treating an energy-dissipative electronic resister as an infinite set of energy-conservative harmonic
oscillators, i.e., a Boson field, which plays a role of an environment for a concerned quantum system (in particular an
LC circuit). This analysis serves as a model for more general Ohmic (linear dissipative) environments.

1. Note on boundary conditions

There are many confusing points we have to be careful in quantizing Boson fields. Among other things I would like
to emphasize in particular two points, the issue of dimension, which is discussed a little bit in the last part of Sec.IIA 2,
and the issue of boundary condition, which we shall look at here by summarizing major boundary conditions used in
the literature to help clarify the differences:

Periodic (Born-von Karman) boundary condition (Traveling wave [complex ])

• Boundary condition: φ(0) = φ(L)

• Variable: φ(x) = 1√
L

∑
kn

φne
iknx

• Fourier transform: φn = 1√
L

∫ L
2

−L
2

dxφ(x)e−iknx

• kn = 2π
L n

• n = 0,±1,±2, · · · ,±N

2
− 1,

N

2︸ ︷︷ ︸
N points

Dirichlet boundary condition (Fixed-end standing wave [real ])

• Boundary condition: φ(0) = φ(L) = 0

• Variable: φ(x) =
√

2
L

∑
kn≥0

φ
(s)
n sin(knx)

• Fourier transform: φ
(s)
n =

√
2
L

∫ L
2

−L
2

dxφ(x) sin(knx)

• kn = π
Ln

• n = 0, 1, 2, · · · , N − 1, N︸ ︷︷ ︸
N points
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Neumann boundary condition (Open-end standing wave [real ])

• Boundary condition: ∂
∂xφ(0) =

∂
∂xφ(L) = 0

• Variable: φ(x) =
√

2
L

∑
kn≥0

φ
(c)
n cos(knx)

• Fourier transform: φ
(c)
n =

√
2
L

∫ L
2

−L
2

dxφ(x) cos(knx)

• kn = π
Ln

• n = 0, 1, 2, · · · , N − 1, N︸ ︷︷ ︸
N points

Mixed boundary condition (Cosine and sine modes [real ])

• Boundary condition: φ(0) = φ(L)

• Variable: φ(x) =
√

2
L

∑
kn≥0

(
φ
(c)
n cos(knx)− φ

(s)
n sin(knx)

)

• Fourier transform:
φ
(c)
n =

√
2
L

∫ L
2

−L
2

dxφ(x) cos(knx)

φ
(s)
n =

√
2
L

∫ L
2

−L
2

dxφ(x) sin(knx)

• kn = 2π
L n

• n = 0, 1, 2, · · · , N
2

− 1︸ ︷︷ ︸
N/2 points

We will henceforth chiefly employ periodic (Born-von Karman) boundary condition for quantizing Boson field.

2. Transmission line [1]

The language we have developed for treating an atomic chain as a Boson field can be translated into that for a
coaxial transmission line (see the correspondences table, Table IIA 2). The field equation of the transmission line can
be read as (

1

v2p

∂2

∂t2
− ∂2

∂x2

)
φ(x, t) = 0, (1)

where

vp =
1√
lc

(2)

TABLE I: Atomic chain - Transmission line - EM traveling mode

Atomic chain Transmission line EM traveling mode

Mass density ρ c ϵ0

Elastic const. c11
1
l

1
µ0

Velocity vs =
√

c11
ρ

vp = 1√
cl

cv = 1√
ϵ0µ0

Impedance Zs =
√

1
ρc11

Zp =
√

l
c

Zv =
√

µ0
ϵ0

Displacement q(x, t) φ(x, t) A(ω)

Momentum p(x, t) q(x, t) Π(ω)
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with l being the inductance per unit length and c being the capacitance to the ground per unit length. The flux
variable φ(x, t) [2] is related to the local voltage V (x, t) as

φ(x, t) =

∫ t

−∞
dτV (x, τ), (3)

and thus

V (x, t) = φ̇(x, t). (4)

The local current I(x, t), on the other hand, is given by

I(x, t) = −

(
∂φ(x,t)

∂x

)
dx(

∂L
∂x

)
dx

= −1

l

∂

∂x
φ(x, t). (5)

With these relations the Lagrangian density can be deduced as

L(x, t) =
c

2
V (x, t)2︸ ︷︷ ︸

Kinetic energy

− l

2
I(x, t)2︸ ︷︷ ︸

Potential energy

=
c

2
(φ̇(x, t))

2 − l

2

(
−1

l

∂

∂x
φ(x, t)

)2

=
c

2
(φ̇(x, t))

2 − 1

2l

(
∂

∂x
φ(x, t)

)2

, (6)

from which the Euler-Lagrange equation can be deduced as

d

dt

∂L
∂φ̇

− ∂L
∂φ

+
∂

∂x

∂L
∂ ∂

∂xφ︸ ︷︷ ︸
extra term

= 0, (7)

which is exactly the wave equation we had in Eq. (1).
The momentum conjugate to φ(x, t) is indeed charge density,

q(x, t) =
∂L
∂φ̇

= cV (x, t). (8)

For a typical coaxial cable (RG-58U)

l = −
∂
∂xφ(x, t)

I(x, t)
=

µ0

2π
ln

(
b

a

)
∼ 200 nH/m (9)

c =
q(x, t)

V (x, t)
=

2πϵ

ln
(
b
a

) ∼ 80 pF/m, (10)

which lead to

vp =
1√
lc

=
1

√
µ0ϵ

∼ 2.5× 108 m/s (11)

Zp =

√
l

c
=

1

2π

√
µ0

ϵ
ln

(
b

a

)
∼ 50 Ω, (12)

where a and b are the radii of the center conductor and the outer conductor, respectively.
The Hamiltonian density is

H(x) =
1

2c
q(x, t)2 +

1

2l

(
∂

∂x
φ(x, t)

)2

(13)
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and the Hamiltonian is obtained by integrating the Hamiltonian density Eq. (13) over the length L:

H =

∫ L
2

−L
2

dxH(x). (14)

In reciprocal space the flux and charge variables are defined with the aforementioned periodic boundary condition
as

φn =
1√
L

∫ L
2

−L
2

dxφ(x)e−iknx (15)

qn =
1√
L

∫ L
2

−L
2

dxq(x)eiknx, (16)

with the commutation relation

[φn, qn′ ] = ih̄δnn′ (17)

and the Hamiltonian can be rewritten in terms of φn and qn as

H =
∑
kn

Hn (18)

with

Hn =
1

2c
qnq−n +

1

2l
φnφ−n

= h̄ωn

(
ĉ†nĉn +

1

2

)
, (19)

where the annihilation and creation operators for the Boson field are respectively defined by

ĉn =

√
cωn

2h̄

(
φ−n +

i

cωn
qn

)
(20)

ĉ†n =

√
cωn

2h̄

(
φn − i

cωn
q−n

)
, (21)

with the commutation relation

[ĉn, ĉn′ ] = δnn′ (22)

These are the same as the forms for the φ-representation of a LC circuit except for the index n and that the quantities
φn and qn are complex variable due to the fact that the periodic boundary condition is used to formulate.
Taking the second continuum limit L → ∞ makes the sum on kn in Eq. (18) changed into the integral over k:

H =

∫ ∞
−∞

dk

2π
h̄ωk

(
ĉ†(k)ĉ(k) +

1

2

)
, (23)

where

ĉ(k) =

√
cωk

2h̄

(
φ(−k) +

i

cωk
q(k)

)
(24)

ĉ†(k) =

√
cωk

2h̄

(
φ(k)− i

cωk
q(−k)

)
, (25)

with

φ(k) = lim
L→∞

√
Lφn =

∫ ∞
−∞

dxφ(x)e−ikx (26)

q(k) = lim
L→∞

√
Lqn =

∫ ∞
−∞

dxq(x)eikx. (27)
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The commutation relation for the canonical operators is

[φ(k), q(k′)] =

[∫ ∞
−∞

dxφ(x)e−ikx,

∫ ∞
−∞

dx′q(x′)eik
′x′
]

=

∫ ∞
−∞

dx

∫ ∞
−∞

dx′ [φ(x), q(x′)]︸ ︷︷ ︸
ih̄δ(x−x′)

e−i(kx−k
′x′)

= ih̄

∫ ∞
−∞

dxe−i(k−k
′)x︸ ︷︷ ︸

2πδ(k−k′)

= ih̄ 2πδ(k − k′), (28)

and thus that for the annihilation and creation operators is

[ĉ(k), ĉ†(k)] = 2πδ(k − k′) (29)

from Eqs. (24), (25), and (28).
We have to be aware that the dimensions of the operators change when the continuum limits are taken. At the first

continuum limit we have

φ(x) = lim
a→0

Na→∞

φn(t)√
a

(30)

q(x) = lim
a→0

Na→∞

qn(t)√
a

, (31)

thus the dimension of φ(x) and q(x) differs from that of φn and qn by factor of [ 1√
length

]. At the second continuum

limit, on the other hand, we have

φ(k) = lim
L→∞

√
Lφn (32)

q(k) = lim
L→∞

√
Lqn, (33)

thus the dimension of φ(k) and q(k) differs from that of φn and qn by factor of [
√
length]. This difference leads to the

different commutators in Eqs (17) and (28), which in turn leads to the different commutators in Eqs. (22) and (29)
for the annihilation and creation operators.

3. Johnson-Nyquist noise

The Heisenberg equations of motion for ĉ(k) and ĉ†(k) are

˙̂c(k, t) =
i

h̄
[H, ĉ(k, t)] = −ivpkĉ(k, t) = −iωk ĉ(k, t) (34)

˙̂c†(k, t) =
i

h̄

[
H, ĉ†(k, t)

]
= ivpkĉ

†(k, t) = iωk ĉ
†(k, t) (35)

thus we have the plane wave solutions:

ĉ(k, t) = ĉ(k, 0)e−iωkt (36)

ĉ†(k, t) = ĉ†(k, 0)eiωkt. (37)

With these results the charge variable q(x, t) is given by

q(x, t) =

∫ ∞
−∞

dk

2π
q(k, t)eikx

=

∫ ∞
−∞

dk

2π
i

√
h̄ωkc

2

(
ĉ†(−k, t)− ĉ(k, t)

)
eikx

= −i

∫ ∞
−∞

dk

2π

√
h̄ωkc

2

(
ĉ(k, 0)ei(kx−ωkt) − h.c.

)
, (38)



6

which is indeed manifestly real as it has to be. The voltage V(x,t), which is also a real quantity, can be written in
terms of q(x, t) as

V (x, t) =
q(x, t)

c
= −i

∫ ∞
−∞

dk

2π

√
h̄ωk

2c

(
ĉ(k, 0)ei(kx−ωkt) − h.c.

)
. (39)

We now identify the modes with positive k as the right-moving modes and those with negative k as the left-moving
modes. The right-moving voltage V→(x, t) can thus be given by

V→(x, t) = −i

∫ ∞
0

dk

2π

√
h̄ωk

2c

(
ĉ(k, 0)ei(kx−ωkt) − h.c.

)
= −i

∫ ∞
0

vpdk

2π

√
h̄ωk

2cvp

(
ĉ(k, 0)
√
vp

ei(kx−ωkt) − h.c.

)

= −i

∫ ∞
0

dω

2π

√
h̄ωZp

2

(
ĉ(ω)ei(kx−ωt) − h.c.

)
(40)

and the left-moving voltage can similarly given by

V←(x, t) = −i

∫ 0

−∞

dω

2π

√
h̄ωZp

2

(
ĉ(ω)ei(kx−ωt) − h.c.

)
, (41)

where ĉ(ω) = ĉ(k,0)√
vp

, which satisfies the commutation relation:

[ĉ(ω), ĉ†(ω′)] = [
ĉ(k)
√
vp

,
ĉ†(k′)
√
vp

] =
2π

vp
δ(k − k′) = 2πδ(ω − ω′). (42)

While the average voltage fluctuation ⟨V (x, t)⟩t is zero under the thermal equilibrium the variance is not, which is
basically the Johnson-Nyquist noise. By evaluating the variance, or rather the spectral density SV V (ω), we shall find
the quantum version of the Nyquist formula. Let us consider the auto-correlation of the voltage at the open terminal

at x = 0 of a semi-infinite transmission line with the characteristic impedance Zp =
√

l
c , which can be given by

⟨V (0, t+ τ)V (0, t)⟩t = ⟨(V→(0, t+ τ) + V←(0, t+ τ)) (V→(0, t) + V←(0, t))⟩t
= 4⟨V→(0, t+ τ)V→(0, t)⟩t, (43)

where the stationarity leads to the first equation, and V (x, t) = V→(x, t)+V←(x, t) and V→(x, t) = V←(x, t) for the
open terminal lead to the second and third equation, respectively.
For the situation in which the stationarity condition is satisfied the spectral density is obtained via the Wiener-

Khinchin theorem:

SV V (Ω) =

∫ ∞
−∞

dτ⟨V (0, t+ τ)V (0, t)⟩teiΩτ

= 4

∫ ∞
−∞

dτ⟨V→(0, t+ τ)V→(0, t)⟩teiΩτ = 4S→V V (Ω). (44)
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With Eq. (40) we have

S→V V (Ω) =

∫ ∞
−∞

dτ⟨V→(0, t+ τ)V→(0, t)⟩eiΩτ

= −
∫ ∞
−∞

dτ

∫ ∞
0

dω′

2π

∫ ∞
0

dω′

2π

h̄Zp

2

√
ωω′

⟨ĉ(ω)c(ω′)e−i(ω+ω′)t⟩︸ ︷︷ ︸
0

−⟨ĉ(ω)c†(ω′)e−i(ω−ω
′)t⟩︸ ︷︷ ︸

(n(ω)+1)2πδ(ω−ω′)

 ei(Ω−ω)τ

+

−⟨ĉ†(ω)c(ω′)e−i(−ω+ω′)t⟩︸ ︷︷ ︸
n(ω)2πδ(ω−ω′)

+ ⟨ĉ†(ω)c†(ω′)e−i(−ω−ω
′)t⟩︸ ︷︷ ︸

0

 ei(Ω+ω)τ

=

∫ ∞
−∞

dτ

∫ ∞
0

dω

2π

h̄ωZp

2

(
(n(ω) + 1) ei(Ω−ω)τ + n(ω)ei(Ω+ω)τ

)
=

∫ ∞
0

dω
h̄ωZp

2
((n(ω) + 1) δ(Ω− ω) + n(ω)δ(Ω + ω))

=
h̄|Ω|Zp

2
((n(Ω) + 1)Θ(Ω) + n(|Ω|)Θ(−Ω)) , (45)

where Θ(x) is the step function. Thus we have the voltage noise spectrum:

SV V (Ω) = 4S→V V (Ω) = 2h̄|Ω|Zp ((n(Ω) + 1)Θ(Ω) + n(|Ω|)Θ(−Ω)) . (46)

Let us here take a step back and see what is going on here. For the real-valued classical variable V (τ) its auto-
correlation functionGV V (τ) = ⟨V (τ)V (0)⟩ is also real. The commutativity of classical variable also suggestsGV V (τ) =
GV V (−τ), that is, the auto-correlation is symmetric in time. This leads to the symmetric-in-frequency power spectrum:

SV V (−Ω) =

∫ ∞
−∞

dτGV V (τ)e
−iΩτ

=

∫ −∞
∞

(−dτ)GV V (−τ)︸ ︷︷ ︸
GV V (τ)

eiΩτ = SV V (Ω). (47)

For the real-valued quantum variable V (τ), however, its auto-correlation function GV V (τ) is not necessarily real! Let
us see this in the following simple argument with a LC circuit. The real-valued flux variable is given by

φ(t) =

√
h̄

2C0ω

(
ĉ(t) + ĉ†(t)

)
=

√
h̄Z0

2

(
ĉe−iω0t + ĉ†eiω0t

)
, (48)

which is manifestly hermitian. The auto-correlation function is, however, not hermitian:

Gφφ(τ) =
h̄Z0

2

(
⟨ĉĉ†⟩e−iω0t + ⟨ĉ†ĉ⟩eiω0t

)
=

h̄Z0

2

(
(n(ω0) + 1)e−iω0t + n(ω0)e

iω0t
)
. (49)

Thus we arrive the asymmetric-in-frequency power spectrum power spectrum:

Sφφ(Ω) =

∫ ∞
−∞

dτGφφ(τ)e
iΩτ =

h̄Z0

2
((n(ω0) + 1)2πδ(Ω− ω0) + n(ω0)2πδ(Ω + ω0)) . (50)

Since V (t) = φ̇(t) by the similar argument we have the asymmetric-in-frequency power spectrum:

SV V (Ω) =
h̄ω2

0Z0

2
((n(ω0) + 1)2πδ(Ω− ω0) + n(ω0)2πδ(Ω + ω0)) , (51)

which is the discrete version of the spectral density in Eq. (46). We see that the non-commutativity of the quantum
operators φ(t) and V (t) with those in different time is the culprit of the asymmetric-in-frequency power spectrum
power spectrum. We also see that the result we have in Eq. (46) can be obtained by adding the contribution of
infinitely many LC circuits with different frequencies.
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This expression Eq. (46) can recast into more compact form:

SV V (Ω) = 2Zp

(
h̄Ω

(
1

e
h̄Ω
kBT − 1

+ 1

)
Θ(Ω)− h̄Ω

(
1

e
− h̄Ω

kBT − 1

)
Θ(−Ω)

)

= 2Zp

(
h̄Ω

(
1

1− e
− h̄Ω

kBT

)
Θ(Ω) + h̄Ω

(
1

1− e
− h̄Ω

kBT

)
Θ(−Ω)

)

=

(
2Zph̄Ω

1− e
− h̄Ω

kBT

)
. (52)

This is called a double-sided spectral density where the frequency Ω runs from negative to positive. The single-sided
spectral density is, on the other hand, given by

S̄V V (Ω) = SV V (Ω) + SV V (−Ω) =

(
2Zph̄Ω

1− e
− h̄Ω

kBT

)
+

(
−2Zph̄Ω

1− e
h̄Ω
kBT

)

= 2Zph̄Ωcoth(
h̄Ω

2kBT
) (53)

= 4Zph̄Ω


1

e
h̄Ω
kBT − 1︸ ︷︷ ︸
n(h̄Ω)

+
1

2

 , (54)

where the frequency Ω runs only in the positive direction. In the last line we can recognize the contribution of the
zero point fluctuation, 2Zph̄Ω, to the noise spectral density explicitly. Equation (54) is called quantum dissipation-
fluctuation theorem, which connects the apparently unrelated two quantities; the transport coefficient Zp and the
noise spectral density S̄V V (Ω).
By taking the classical limit kBT ≫ h̄Ω the spectral density Eq. (54) becomes

S̄V V (Ω) = 4ZpkBT, (55)

which is the well-known Johnson-Nyquist formula, where the spectrum is proportional to the impedance Zp and
temperature T

4. Ohmic environment

We are thus able to treat a dissipative element characterized by the impedance Zp quantum mechanically. The quan-
tum dissipation fluctuation theorem Eq. (54) shows peculiar quantum effect which manifest itself as the asymmetric-
in-frequency power spectrum in the quantum regime kBT ≤ h̄Ω. That the dissipative elements can be treated as a
collection of conservative (reactive) elements is essentially the way in which the Caldeira-Leggett model deals with re-
sisters quantum mechanically [1, 2]. The environment which is characterized by the frequency-independent impedance
Zp and has the noise power spectrum Eq. (52) is called Ohmic environment.
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