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We shall study LCR circuit as an example of damped harmonic oscillators. The LCR circuit can
be modeled as a dissipationless LC circuit coupled to a dissipationless semi-infinite transmission
line. Along this study we shall see how the more general quantum Langevin equation is emerged
from the Hamiltonian formalism.

II. DAMPED HARMONIC OSCILLATORS

B. Langevin equation

1. Circuit equation

Let us study the situation in which an LC circuit system (a harmonic oscillator) coupled to a transmission line
bath (a boson field) characterized by the impedance Zp. The Langevin equation for the LC circuit is obtained by the
following argument. Remembering that the right-moving voltage and the right-moving current are related as [1, 2]

∂

∂x
V→(x, t) =

∂
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=
∂

∂t

∂

∂x
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. (1)

Thus we have the current from the following expression:
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l

∫ t

−∞
dτ

(
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)
. (2)

By plugging
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∫ ∞
0

dω
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√
h̄ωZp

2

(
ĉ(ω)ei(kx−ωt) − h.c.

)
(3)

V←(x, t) = −i

∫ ∞
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dω

2π

√
h̄ωZp
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ĉ(ω)ei(−kx−ωt) − h.c.
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into the constitutive equation (2), which is essentially the Newton’s law for the transmission line, we have

I→(x, t) =
V→(x, t)

Zp
(5)

I←(x, t) = −V←(x, t)

Zp
(6)

Since the boundary between the transmission line bath and the LC circuit system at x = 0 is open we have

V (x = 0, t) = V→(x = 0, t) + V←(x = 0, t) ≡ Vout(t) + Vin(t) (7)

I(x = 0, t) = I→(x = 0, t) + I←(x = 0, t)

=
1

Zp
(V→(x = 0, t)− V←(x = 0, t)) ≡ 1

Zp
(Vout(t)− Vin(t)) . (8)
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This can be considered as the classical input-output relation. By eliminating Vout(t) the voltage and the current
relation at the boundary becomes

V (x = 0, t) = ZpI(x = 0, t) + 2Vin(t). (9)

Now let us consider the following LCR circuit equation, where the resistance stems from the coupling to the semi-
infinite transmission line bath characterized by the impedance Zp. By Kirchhoff ’s law we have

Q(t)

C0
+ L0İ(x = 0, t) + V (x = 0, t) = 0. (10)

With the emf voltage V (x = 0, t) due to the semi-infinite transmission line bath which is obtained from Eq. (9) the
circuit equation becomes

Q(t)

C0
+ ZpI(x = 0, t) + L0İ(x = 0, t) = −2Vin(t), (11)

which leads to the following white-noise-form Langevin equation [3]:

¨Q(t) + γ︸︷︷︸
Zp
L0

˙Q(t) + ω0︸︷︷︸
1

L0C0

Q(t) = −2Vin(t)

L0
, (12)

where Vin(t) and Q(t) are the stochastic variables, which can be considered to have a dimension of [ 1√
Time

] and called

Vin(t) : Wiener process (white noise)

Q(t) : Ornstein−Uhlenbeck process

respectively [3]. The above Langevin equation, Eq. (12) is a typical example of the stochastic differential equation,
for which the more careful mathematical manipulation is required than for the ordinary differential equation [3].
Nevertheless, we shall abuse the Fourier transform and get

Q(ω) =
1

(ω2
0 − ω2)− iωγ

(
−2Vin(ω)

L0

)
, (13)

which gives us the correct spectral density

SQQ(ω) =
1

(ω2
0 − ω2)

2
+ ω2γ2

(
4S̄←V V (ω)

L2
0

)
, (14)

where the spectral density S̄←V V (ω) is given by

S̄←V V (ω) =
1

4
S̄V V (ω) = Zph̄ω

(
n(ω) +

1

2

)
(15)

From the virial theorem the capacitive energy ⟨ Q2

2C0
⟩ and inductive energy ⟨ φ2

2L0
⟩ share the same energy E

2 . We thus
have the following energy spectral density for the LCR circuit:
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SQQ(ω)

C0
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=
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4

(
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ω2
0C0L2

0
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2
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=

1
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2
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4

(
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L0
h̄ω

(
n(ω) +

1

2
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=

γ
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2
+ γ2

4

(
h̄ω

(
n(ω) +

1

2

))
. (16)

Let us reexamine the LCR circuit from the viewpoint of Hamiltonian formalism hoping that we will gain more
general tools to tackle open quantum systems.
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2. Hamiltonian formalism

Let us reexamine the LCR circuit from the viewpoint of Hamiltonian formalism hoping that we will gain more
general tools to tackle open quantum systems. Invoking the argument we have used in studying the coupled harmonic
oscillators, we shall assume the total Hamiltonian to be

H = Hs +Hb +HI , (17)

where Hs, Hb, and HI are the Hamiltonians of the LC circuit, the transmission line, and their interaction, and are
respectively given by

Hs = h̄ω0â
†â (18)

Hb =

∫ ∞
−∞

dω

2π
h̄ωĉ†(ω)ĉ(ω) (19)

HI = −ih̄

∫ ∞
−∞

dω

2π

(
f(ω)â†ĉ(ω)− f∗(ω)âĉ†(ω)

)
. (20)

Here the coupling strength f(ω) has the dimension of
√
Angular frequency and will be identified to the familiar

quantity later on.

3. Fermi’s golden rule and connecting the coupling strength fc and the decay rate κ

Let us begin by analyzing the coupled system by focusing on the state evolution. Suppose that the LC circuit
is initially in the eigenstate |N⟩ of the unperturbed LC Hamiltonian Eq. (18), i.e., Ĥs|N⟩ = h̄ω0N |N⟩. The time-
evolution of the state |N⟩ in the interaction picture can be given by

|N, t⟩I = ÛI(t)|N⟩, (21)

where the interaction-picture time-evolution operator ÛI(t) can be gotten by the following equation:

ih̄
∂

∂t
ÛI(t) = VI(t)ÛI(t). (22)

The formal solution of Eq. (22) with the initial condition of ÛI(0) = 1 is given by

ÛI(t) = 1− i

h̄

∫ t

0

dτVI(τ)ÛI(τ). (23)

The perturbative approximate solution is the famous Dyson series and for the current purpose we only need terms
up to first order in V̂I :

ÛI(t) = 1− i

h̄

∫ t

0

dτVI(τ)

(
1− i

h̄

∫ t

0

dτ ′VI(τ
′)

(
1− i

h̄

∫ t

0

dτ ′′VI(τ
′′) · · ·

))
≈ 1− i

h̄

∫ t

0

dτVI(τ). (24)

The Schrödinger-picture interaction term HI in Eqs. (17) and (20) and the interaction-picture interaction term VI in
Eq. (24) are related in the following way:

VI(t) = ei
Hs+Hb

h̄ tHIe
−iHs+Hb

h̄ t

= −ih̄

∫ ∞
−∞

dω

2π

(
f(ω)â†eiω0tĉ(ω)e−iωt − f∗(ω)âe−iω0tĉ†(ω)eiωt

)
. (25)

Let us then calculate the probability amplitude αN→N+1(t) = ⟨N + 1|N, t⟩I by plugging Eqs. (24) and (25) in the
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time evolution formula Eq. (21):

αN→N+1(t) = ⟨N + 1|N, t⟩I
= ⟨N + 1|ÛI(t)|N⟩

= ⟨N + 1|N⟩︸ ︷︷ ︸
0

− i

h̄

∫ t

0

dτ⟨N + 1|V̂I(τ)|N⟩

= −
∫ t

0

dτ

∫ ∞
−∞

dω

2π

f(ω) ⟨N + 1|â†|N⟩︸ ︷︷ ︸√
N+1

eiω0τ ĉ(ω)e−iωτ − f∗(ω) ⟨N + 1|â|N⟩︸ ︷︷ ︸
0

e−iω0τ ĉ†(ω)eiωτ


= −

√
N + 1

∫ t

0

dτeiω0τ

∫ ∞
−∞

dω

2π
f(ω)ĉ(ω)e−iωτ . (26)

When our concerned frequency band is narrow and centered on some peculiar frequency Ω
2π we could make the

Markov approximation, in which the coupling strength is assumed to be frequency-independent, i.e., f(ω) ∼ f(Ω) = fc:

αN→N+1(t) = −
√
N + 1 fc

∫ t

0

dτeiω0τ

∫ ∞
−∞

dω

2π
ĉ(ω)e−iωτ︸ ︷︷ ︸

ĉ(t)e−iΩτ

. (27)

Here the time-domain operator ĉ(t) and its conjugate ĉ†(t) are introduced, which are within the Markov approximation
can be characterized by the following relation:

[ĉ(t), ĉ†(t′)] = δ(t− t′) (28)

⟨ĉ†(t)ĉ(t′)⟩ = n(Ω)δ(t− t′), (29)

⟨ĉ(t)ĉ†(t′)⟩ = (n(Ω) + 1) δ(t− t′), (30)

which can be considered as the characteristics of the quantum analogue of white noise. Note that the average photon
number n(Ω) is a dimensionless quantity, which can be obtained by

n(Ω) =

∫ Ω+∆
2

Ω−∆
2

dω⟨ĉ†(ω)ĉ(ω)⟩, (31)

where ∆ is the bandwidth of the concerned bath mode.
The probability that state of the LC oscillator changes from unperturbed eigenstate |N⟩ to unperturbed eigenstate

|N + 1⟩ is

PN→N+1(t) = |αN→N+1(t)|2

= |fc|2(N + 1)

∫ t

0

dτ1e
−i(ω0−Ω)τ1 ĉ†(τ1)

∫ t

0

dτ2e
i(ω0−Ω)τ2 ĉ(τ2)

= |fc|2(N + 1)

∫ t

0

dτ2

∫ t−τ2

−τ2
dT

(
ĉ†(T + τ2)ĉ(τ2)

)
, (32)

where T = τ1− τ2 and ω0 = Ω is assumed. The auto-correlation term ĉ†(T + τ2)ĉ(τ2) is assumed to be stationary (i.e.,
independent on τ2) thus by taking the average over τ2 we have ⟨ĉ†(T + τ2)ĉ(τ2)⟩ = n̄(ω0)δ(T ), which has negligible
value beyond the characteristic correlation time T > τc. Then we can extend the both bounds of second integral to
infinity and we have

PN→N+1(t) = |fc|2(N + 1)

∫ t

0

dτ2

∫ ∞
−∞

dT ⟨ĉ†(T )ĉ(0)⟩︸ ︷︷ ︸
n(ω0)δ(T )

= |fc|2(N + 1) t n(ω0), (33)

From Eq. (33) we see that the probability PN→N+1(t) grows linearly with time t. The transition rate for N → N+1
can then be given by the time derivative of PN→N+1(t), i.e.,

ΓN→N+1 =
dPN→N+1(t)

dt
= (N + 1) |fc|2n(ω0)︸ ︷︷ ︸

Γ↑

= (N + 1)Γ↑. (34)
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This is the upward transition rate of a harmonic oscillator essentially leading to the same conclusion as Fermi’s golden
rule. Similarly, we have the downward transition rate for N → N − 1

ΓN→N−1 = N |fc|2 (n(ω0) + 1)︸ ︷︷ ︸
Γ↓

= NΓ↓. (35)

Let us now see the consequence of the system-bath coupling. The photon occupation number probability PN (t) for

the LC circuit system changes with time due to the coupling to the bath. Its rate of change P (N,t)
dt can be determined

by the four terms as follow

P (N, t)

dt
= Γ↑NP (N − 1)− Γ↑(N + 1)P (N)− Γ↓NP (N) + Γ↓(N + 1)P (N + 1), (36)

where Γ↑ and Γ↓ are given by Fermi’s golden rule, that is, by Eq. (34) and (35), respectively. Consequently we have
the following rate equation:

d

dt
⟨N⟩ =

∑
N

N
P (N, t)

dt

= Γ↑
∑
N

(N + 1)P (N)− Γ↓
∑
N

NP (N),

= Γ↑⟨N + 1⟩ − Γ↓⟨N⟩
= − (Γ↓ − Γ↑) ⟨N⟩+ Γ↑

= −|fc|2⟨N⟩+ |fc|2n(ω0)

= −κ⟨N⟩+ κn(ω0), (37)

where we used Eqs. (34) and (35) for the last line. The steady state condition d
dt ⟨N⟩ = 0 gives us the expected final

occupation number of the LC photons:

N̄ = n(ω0), (38)

that is, the averaged photon number of the bath. The solution of the rate equation Eq. (37) can then be given by

⟨N(t)⟩ = ⟨N(0)⟩e−κt + n(ω0)
(
1− e−κt

)
. (39)

We thus find that the coupling constant fc and the decay rate of the LC photon κ are related as fc =
√
κ.

4. Quantum Langevin equation and connecting the two decay rate κ and γ =
Zp

L0

Now that we identify the coupling strength f(ω) in Eq. (20) as f(ω) ∼ fc =
√
κ within the Markov approximation,

we shall investigate the couped Heisenberg equations derived from the following interaction Hamiltonian:

HI = −ih̄
√
κ

∫ ∞
−∞

dω

2π

(
â†ĉ(ω)− âĉ†(ω)

)
. (40)

Note that in the interaction picture the Hamiltonian Eq. (40) can be made further simpler,

H̃i − ih̄
√
κ
(
â†ĉ(t)e−iΩt − âĉ†(t)eiΩt

)
, (41)

with the time-domain operators ĉ(t) and ĉ†(t). The Heisenberg equation of motion for the bath is

˙̂c(ω, t) =
i

h̄
[H, ĉ(ω, t)] = −iωĉ(ω, t) +

√
κâ(t). (42)

We can find the formal solution of Eq. (42) as

ĉ(ω, t) = e−iω(t−t0)ĉ(ω, t0) +
√
κ

∫ t

t0

dτe−iω(t−τ)â(τ). (43)
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The Heisenberg equation of motion for the system, on the other hand, is given by

˙̂a(t) =
i

h̄
[H, â(t)] = −iω0â(t)−

√
κ

∫ ∞
−∞

dω

2π
ĉ(ω, t). (44)

By plugging the solution for ĉ(ω, t) in Eq. (43) into Eq. (44) we have

˙̂a(t) = −iω0â(t)−
√
κ

∫ ∞
−∞

dω

2π

(
e−iω(t−t0)ĉ(ω, t0) +

√
κ

∫ t

t0

dτe−iω(t−τ)â(τ)

)
= −iω0â(t)−

√
κ

∫ ∞
−∞

dω

2π
e−iω(t−t0)ĉ(ω, t0)︸ ︷︷ ︸
ĉ(t)e−iΩt

−κ

∫ ∞
−∞

dω

2π

∫ t

t0

dτe−iω(t−τ)â(τ)︸ ︷︷ ︸∫ t
t0

dτâ(τ)δ(t−τ)= 1
2 â(t)

= −iω0â(t)︸ ︷︷ ︸
Free evolution

−
√
κĉ(t)e−iΩt︸ ︷︷ ︸

Fluctuation

−κ

2
â(t)︸ ︷︷ ︸

Dissipation

, (45)

which shall be called the quantum Langevin equation.
Let α̂(t) be defined by â(t) = α̂(t)e−iΩt. Plugging this α̂(t) in Eq. (45) we have

˙̂α(t) = −i (ω0 − Ω) α̂(t)−
√
κĉ(t)− κ

2
α̂(t). (46)

The steady state solution for α̂(t) is

α̂(t) =
−
√
κ

i (ω0 − Ω) + κ
2

ĉ(t), (47)

thus we have the average photon number in the LC circuit:

⟨α̂†(t)α̂(t′)⟩ =
κ

(ω0 − Ω)
2
+ κ2

4

⟨ĉ†(t)ĉ(t′)⟩

=
κ

(ω0 − Ω)
2
+ κ2

4

n(Ω)δ(t− t′), (48)

where Eq. (29) is used for the last equation. Consequently, the spectral density at the angular frequency Ω for the
LC photon can be obtained by

Sn(Ω) =

∫ ∞
−∞

dT ⟨α̂†(T )α̂(0)⟩eiΩT

=

∫ ∞
−∞

dT
κ

(ω0 − Ω)
2
+ κ2

4

n(Ω)δ(T )eiΩT

=
κ

(ω0 − Ω)
2
+ κ2

4

n(Ω). (49)

Lo and behold, by replacing κ with γ =
Zp

L0
and multiplying the unit energy h̄Ω, we can reproduce the energy spectral

density Eq. (16), which was obtained by the more explicit argument with the circuit equation.
Now the story comes full circle. The coupling of the LC circuit system to the semi-infinite (dissipative) transmission

line bath can be modeled by the interaction

HI = −ih̄

∫ ∞
−∞

dω

2π

√
Zp

L0

(
â†ĉ(ω)− (ω)âĉ†(ω)

)
, (50)

where Zp is the impedance of the bath and L0 is the inductance of the system. We thus succeed in treating the open
dissipative system quantum mechanically!
The quantum Langevin equation (45) is one of the most useful equation in quantum optics and in treating macro-

scopic quantum phenomena, which is applicable to many other open quantum systems where a (0+1)-dimensional
system coupled to a continuum (d+1)-dimensional bath, where d is the spatial dimension of the bath. The extension
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to the coupling between a two level system and (3+1)-dimensional electromagnetic environments leads us to the realm
of the cavity QED, which will be our future subject.

[1] M. H. Devoret, in Les Houches Session LXIII, Quantum Fluctuations, pp. 351-386 (Elsevier, Amsterdam, 1997).
[2] A. A. Clerk et al., Rev. Mod. Phys. 82, 1155 (2010).
[3] D. T. Gillespie, Am. J. Phys. 64, 225 (1996).


