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We shall look at how two level systems can be treated quantum mechanically, learn how the electric
dipole interaction emerged as the coupling term between a two level system and electromagnetic
field, and deduce Einstein’s A coefficient, a decay rate of the two level system due to the coupling to
the vacuum fluctuation of electromagnetic field surrounding it. We then learn how a cavity changes
the density of state of the electromagnetic environment and modifies the decay rate of two level
systems.

III. TWO LEVEL SYSTEM AND CAVITY QED

B. Two level systems

3. Quantum description of two level systems

The system with anharmonic potential can be treated as the two level system by exploiting the fact that each
energy spacing is unique thus by choosing two distinct energy levels |0⟩ and |1⟩, which are the energy eigenstates with
energies h̄ω0 and h̄ω1 > h̄ω0, respectively. The useful operators for the two level systems are the Pauli operators,

σ̂0 =
1

2
(|0⟩⟨0|+ |1⟩⟨1|) =

(
1
2 0
0 1

2

)
(1)

σ̂x =
1

2
(|1⟩⟨0|+ |0⟩⟨1|) =

(
0 1

2
1
2 0

)
(2)

σ̂y =
i

2
(−|1⟩⟨0|+ |0⟩⟨1|) =

(
0 − i

2
i
2 0

)
(3)

σ̂z =
1

2
(−|0⟩⟨0|+ |1⟩⟨1|) =

(
1
2 0
0 −1

2

)
, (4)

which satisfy the angular momentum commutation relation

[σ̂i, σ̂j ] = iϵijkσ̂k (5)

The Pauli operators in the form of Eqs. (1), (2), (3), and (4) thus play the role of generators of rotation. The ladder
operators are then defined by

σ̂± = σ̂x ± iσ̂y. (6)
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The irreducible rank-1 tensor operators [1] can constructed with the Pauli operators,

T 1
1 = − 1√

2
(σ̂x + iσ̂y)

= − 1√
2
|1⟩⟨0| =

(
0 − 1√

2

0 0

)
(7)

T 1
0 = σ̂z

= −1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1| =

(
1
2 0
0 −1

2

)
(8)

T 1
−1 =

1√
2
(σ̂x − iσ̂y)

=
1√
2
|0⟩⟨1| =

(
0 0
1√
2

0

)
, (9)

to satisfy the definition of the irreducible tensors[
σ̂z, T

k
q

]
= q T k

q[
σ̂±, T

k
q

]
=
√
k(k + 1)− q(q ± 1) T k

q±1, (10)

which can be viewed as an operator extension of the more familiar definition of angular momentum eigenstates

σ̂z|k, q⟩ = q |k, q⟩
σ̂±|k, q⟩ =

√
k(k + 1)− q(q ± 1) |k, q ± 1⟩. (11)

The Hamiltonian of an electron in Coulomb potential U(r) = − 1
4πϵ0

e2

r can be written in terms of Pauli operators:

Ha =
p2

2me
− 1

4πϵ0

e2

r

≃ h̄ω0|0⟩⟨0|+ h̄ω1|1⟩⟨1|
= h̄ (ω1 + ω0)︸ ︷︷ ︸

Ω

σ̂0 + h̄ (ω1 − ω0)︸ ︷︷ ︸
ωA

σ̂z

= h̄Ωσ̂0 + h̄ωAσ̂z. (12)

The electric dipole moment of Bohr’s atom can be written in terms of Pauli operators

d = er = erner = ea0n
2 (σ̂xex + σ̂yey + σ̂zez) (13)

with the Cartesian basis {ex,ey, ez}. It should be noted that the electric dipole operator d is the polar vector
operator having odd parity. By appreciating the characteristic symmetry property of the polar vector, the electric
dipole moment d can be given in terms of the irreducible rank-1 tensor operators

d = ea0n
2
(
T 1
1 e

∗
1 + T 1

0 e
∗
0 + T 1

−1e
∗
−1

)
, (14)

where {e1, e0, e−1} is the spherical basis, whose elements are given by

e1 = − 1√
2
(ex + iey) (15)

e0 = ez (16)

e−1 =
1√
2
(ex − iey) . (17)

It can be recognized that to account the odd parity {T 1
−1, T

1
0 , T

1
1 } should be considered as the normalization-modified

spherical harmonics {
√
4πY1−1(θ, ϕ),

√
4πY10(θ, ϕ),

√
4πY11(θ, ϕ)} [2].
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C. Cavity QED and circuit QED

1. Electric dipole Hamiltonian

Now let us move on to investigate the interaction between the two level systems and electromagnetic environment.
The dynamics of an electron in Bohr’s atom in an electromagnetic environment can be formal described by the
minimal-coupling Hamiltonian [3, 4]

H =
1

2me
[p+ eA(r)]

2
+ U(r) +HR. (18)

Under the assumption that an electron confined within a volume far smaller than the wavelength of the field (long-
wavelength approximation) we can get more user-friendly electric-dipole Hamiltonian,

H ′ =
p2

2me
+ U(r)︸ ︷︷ ︸

Atomic part: Ha

+ Hdip︸︷︷︸
Dipole selfenergy

+

(
−d · D

′(0)

ϵ0

)
︸ ︷︷ ︸

Interaction part: Hel

+ HR︸︷︷︸
Free field part

, (19)

from the minimal-coupling Hamiltonian Eq. (18) by performing a canonical transformation, the so-called Power-
Zienau-Woolley transformation [3, 4]. Here d is the electric dipole moment defined by Eq. (14) for Bohr’s atom. The
displacement D′(r) after the transformation is related to the transverse electric field E⊥(r) before the transformation
as

D′(r)

ϵ0
= E⊥(r). (20)

Thus the interaction Hamiltonian represents the electric-dipole interaction

Hel = −d ·E⊥(0). (21)

Note that the atomic part Ha and the dipole self energy Hdip degenerate into Eq. (12) within the two level approxi-
mation.
More heuristic approach to the electric dipole interaction Hamiltonian Eq. (21) goes as follow [1]. The starting

point is again the minimal-coupling Hamiltonian Eq. (18). By expanding the first term we have

H =
p2

2me
+

e

2me
(p ·A+A · p) + e2

2me
A2 + U(r) +HR. (22)

Under the weak filed condition |p| ≫ |eA| the third term e2

2me
A2 can be neglected. The second term can be simplified

to

e

2me
(p ·A+A · p) = e

me
p ·A (23)

by noticing the fact that

[p ·A(r)]ψ(r) = −ih̄∇ · (A(r)ψ(r))

= −ih̄

 ∇ ·A(r)︸ ︷︷ ︸
0: Coulomb gauge

ψ(r) +−ih̄A(r) · (∇ψ(r))

= [A(r) · −ih̄∇]ψ(r)

= [A(r) · p]ψ(r), (24)

that is, p and A commute (p ·A = A · p). Substituting

p = me
dr

dt
= me

1

ih̄
[r,Ha] (25)
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into Eq. (23) the transition probability from the upper state |1⟩ to lower state |0⟩ becomes

⟨0| e
me

p ·A|1⟩ =
e

ih̄
⟨0| [r,Ha] ·A|1⟩

=
e

ih̄
⟨0| (rHa −Har) |1⟩ ·A

=
e

ih̄
(h̄ω1 − h̄ω0) ⟨0|r|1⟩ ·A

= e⟨0|r|1⟩︸ ︷︷ ︸
⟨0|d|1⟩

· (−iωA)A︸ ︷︷ ︸
˙A=−E⊥

= ⟨0| − d ·E⊥|1⟩. (26)

Thus the second term e
me

p ·A in Eq. (22) is related to the the electric dipole Hamiltonian Hel.

2. Einstein’s A coefficient

Now that we have the interaction Hamiltonian Hel for the two level system coupled to the electromagnetic environ-
ment, we can see how the vacuum fluctuation or zero-point-fluctuation of the electromagnetic field causes the energy
decay from the upper state |1⟩ of the two level system to the lower state |0⟩. The decay rate ΓA from excited state
to ground state is called Einstein’s A coefficient, which can be calculated using Fermi’s golden rule. Suppose initially
that the polarization of the electric field is along x-axis:

E⊥(0, t) = i
∑
k

√
h̄ωk

2ϵ0V
ex

(
âke

−iωkt − â†ke
iωkt
)
. (27)

Then the relevant dipole moment which would interacts with the electric field Eq. (27) is that along ex, that is,

d =
√
2µnσ̂xex = µn

(
σ̂+√
2
+
σ̂−√
2

)
ex = µn

(
−T 1

1 + T 1
−1

)
ex, (28)

where µn = ea0n
2

√
2

is the electric dipole moment of the transition n → n − 1 [5]. The interaction-picture interaction

Hamiltonian can then be given by

VI(t) = −i
∑
k

µn√
2

√
h̄ωk

2ϵ0V

(
σ̂+e

iωAt + σ̂−e
−iωAt

) (
âke

−iωkt − â†ke
iωkt
)
, (29)

where the following relations are used:

˙̂σ+ =
1

ih̄
[σ̂+,Ha] = iωAσ̂+ ⇒ σ̂+(t) = σ̂+(0)e

iωAt (30)

˙̂σ− =
1

ih̄
[σ̂−,Ha] = −iωAσ̂− ⇒ σ̂−(t) = σ̂−(0)e

−iωAt, (31)

where Ha is the atomic Hamiltonian Eq. (12). Now invoking the rotating-wave approximation, the interaction Hamil-
tonian Eq. (29) is further simplified to be

VI(t) = −i
∑
k

µn√
2

√
h̄ωk

2ϵ0V︸ ︷︷ ︸
λkh̄

(
σ̂+âke

i(ωA−ωk)t − σ̂−â
†
ke

−i(ωA−ωk)t
)

= −ih̄
∑
k

λk

(
σ̂+âke

i(ωA−ωk)t − σ̂−â
†
ke

−i(ωA−ωk)t
)
. (32)

The transition probability amplitude,

α1→0(t) = ⟨0| ˆUI(t)|1⟩, (33)
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can be calculated by plugging the Dyson series

ÛI(t) = 1− i

h̄

∫ t

0

dτVI(τ)

(
1− i

h̄

∫ t

0

dτ ′VI(τ
′)

(
1− i

h̄

∫ t

0

dτ ′′VI(τ
′′) · · ·

))
≈ 1− i

h̄

∫ t

0

dτVI(τ). (34)

into the time-evolution operator UI(t) in Eq. (33), that is,

α1→0(t) = ⟨0|ÛI(t)|1⟩

= ⟨0|1⟩︸︷︷︸
0

− i

h̄

∫ t

0

dτ⟨0|V̂I(τ)|1⟩

= −
∫ t

0

dτ
∑
k

λk

⟨0|σ̂+|1⟩︸ ︷︷ ︸
0

âke
i(ωA−ωk)τ − ⟨0|σ̂−|1⟩︸ ︷︷ ︸

W10

â†ke
−i(ωA−ωk)τ


=

∫ t

0

dτ
∑
k

λkW10â
†
ke

−i(ωA−ωk)τ . (35)

For vacuum we have the transition probability:

P1→0(t) =
⟨
|α1→0(t)|2

⟩
0

=

∫ t

0

dτ

∫ t

0

dτ ′

⟨(∑
k

λkW10âke
i(ωA−ωk)τ

)(∑
k′

λk′W ∗
10â

†
k′e

−i(ωA−ωk)τ
′

)⟩
0

=

∫ t

0

dτ

∫ t

0

dτ ′
∑
k

|λkW10|2 ⟨âkâ†k⟩0︸ ︷︷ ︸
1

ei(ωA−ωk)(τ−τ ′)

=
∑
k

|λkW10|2
∫ t

0

dτ

∫ t

0

dτ ′ei(ωA−ωk)(τ−τ ′)︸ ︷︷ ︸
2πδ(ωA−ωk)

= 2πt
∑
k

δ (ωA − ωk) |λkW10|2

= 2πt
∑
k

δ (ωA − ωk)
µ2
n

2

ωk

2h̄ϵ0V
|W10|2 (36)

The number of modes per unit volume can be obtained by the following geometric argument. Suppose the spherical

shell of radius k and thickness dk in the reciprocal space. Since there are 2 polarization modes in unit cell
(
2π
L

)3
in

the reciprocal space associated with the real space of volume V = L3 the following relation holds:

2 :

(
2π

L

)3

= V ρ(k)dk : 4πk2dk, (37)

where ρ(k) is the density of state and we have

ρ(k)dk =
k2

π2
dk (38)

The density of state with respect to ω can then be given by

ρ(ω)dω =
ω2

π2c2
dω. (39)

Consequently the sum over k in Eq. (36) can be replaced by the integral over ω as

∑
k

δ (ωA − ωk) →
∫ ∞

0

ρ(k)dkδ (ωA − ωk) =

∫ ∞

0

ρ(ω)dωδ (ωA − ω) =
ω2
A

π2c3
. (40)
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Note that this procedure of changing from sum to integral implicitly involved the second continuum limit V → ∞
with

â(ω) =
â(k)√
c

= lim
V→∞

√
V âk√
c
, (41)

which satisfies the commutation relation[
â(ω), â†(ω′)

]
=

[
â(k)√
c
,
â†(k′)√

c

]
=

2π

c
δ(k − k′) = 2πδ(ω − ω′). (42)

The transition probability Eq. (36) becomes

P1→0(t) = 2πt
ω2
A

π2c2
V

c

µ2
n

2
|W10|2

ωA

2h̄ϵ0V

= t
µ2
n

2
|W10|2

ω3
A

πϵ0h̄c3
. (43)

The decay rate is thus

ΓA =
dP1→0(t)

dt
=
µ2
n

2
|W10|2

ω3
A

πϵ0h̄c3
. (44)

Let us look at the part

µ2
n

2
|W10|2 =

µ2
n

2
|⟨0|σ̂−|1⟩|2 (45)

more carefully. In terms of the irreducible tensor representation in Eq. (28) it can be rewritten in more informative
form as

µ2
n

2
|W10|2 =

µ2
n

2
|⟨0|

√
2T 1

−1|1⟩|2 =
1

2J ′ + 1

∑
MJ

∑
M ′

J

µ2
n|⟨g, J,MJ |T 1

−1|e, J ′,M ′
J ⟩|2 (46)

where the initial state is averaged over the excited state sub-levels and the final state is the sum over the possible
ground state sub-levels;

|1⟩ = 1

2J ′ + 1

∑
MJ

|e, J ′,M ′
J⟩ (47)

|0⟩ =
∑
M ′

J

|g, J,MJ⟩. (48)

From the Wigner-Eckart theorem [1], the matrix element in Eq. (46) can be rewritten in terms of the Clebsch-Gordan
coefficient as

|⟨g, J,MJ |T 1
−1|e, J ′,M ′

J ⟩|2 =
|⟨g, J ||T 1||e, J ′⟩|2

2J + 1
|⟨J ′,M ′

J ; 1,−1|J,MJ ⟩|2. (49)

where ⟨g, J ||T 1||e, J ′⟩ is called the reduced matrix element of the tensor operator T 1, which is independent on the
geometry of the system (independent on magnetic sub-levels MJ and M ′

J ). Using the following identity for the
Clebsch-Gordan coefficient,

∑
q

∑
MJ

∑
M ′

J

|⟨J ′,M ′
J ; 1, q|J,MJ ⟩|2 =

∑
MJ

∑
M ′

J

∑
q

|⟨J ′,M ′
J ; 1, q|J,MJ⟩|2


=
∑
MJ

1 = 2J + 1, (50)

we have ∑
MJ

∑
M ′

J

|⟨J ′,M ′
J ; 1,−1|J,MJ⟩|2 =

2J + 1

3
, (51)
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since the concerned space is isotropic the equality in choosing particular q out of three possible value {−1, 0, 1} results.
Plugging Eqs. (49) and (51) in Eq. (46) we have

µ2
n

2
|W10|2 =

1

2J ′ + 1
µ2
n

|⟨g, J ||T 1||e, J ′⟩|2

2J + 1

(
2J + 1

3

)
=

1

3
µ2
n

|⟨g, J ||T 1||e, J ′⟩|2

2J ′ + 1︸ ︷︷ ︸
1 : for J ′=J+1

=
1

3
µ2
n =

1

3

(
ea0n

2

√
2

)2

. (52)

Plugging Eqs. (52) into the form of the decay rate Eq. (44) we have the famous Einstein A coefficient:

ΓA =
µ2
nω

3
A

3πϵ0h̄c3
. (53)

The Einstein A coefficient Eq. (53) tells us (1) the decay rate increases third power in ωA, which indicates the general
trend that the two level systems with wider energy gap decay faster than those with narrow gap (2) the larger the
dipole moment µ is the faster the decay rate becomes.
In this juncture let me introduce the trivia regarding the Einstein A coefficient ΓA. First, the angular frequency

ωA of Bohr’s atom for quantum number of n = 1 (the orbit radius of r1 = a0) becomes

ωA =
h̄

mer21
=

h̄

mea20
(54)

thus

µ2
1 =

(
ea0√
2

)2

=

e
√

h̄

2meωA︸ ︷︷ ︸
xzpf


2

= (exzpf)
2
. (55)

where µ1 is the dipole moment of classical electron oscillator, an electron in a harmonic trap with the trap angular
frequency of ωA and the its r.m.s. displacement is zero-point-fluctuation xzpf . The radiative decay rate of the classical
electron oscillator can then be obtained by plugging µ1 of Eq. (55) into µn in Eq. (53):

Γ1 =
µ2
1ω

3
A

3πϵ0h̄c3
=

e2ω2
A

6πϵ0mec3
, (56)

which does not contain h̄.
Second, the dimensionless oscillator strength Fij of the transition from level j down to level i characterized by

γij [6] can be defined as

Fij =
γij
3Γ1

, (57)

where the factor 3 in the denominator is to undo the average we have performed in Eq. (51). This quantifies the
decay rate of an atom (or an artificial atom) by comparing it with that of the classical electron oscillator [6].
Finally, it is instructive to see the relation between the Einstein A coefficient and the Larmor formula of radiation

power Pr emitted from the classical dipole, [5]:

h̄ωAΓA = h̄ωA
µ2
nω

3
A

3πϵ0h̄c3
=

(
ea0n

2
√
2

)2
ω4
A

3πϵ0c3
=

e2

6πϵ0c3
(
ω4
Aa

2
0n

4
)

=
e2

6πϵ0c3
(
ω2
Arn

)2
=

e2

6πϵ0c3
(r̈n)

2
= Pr. (58)
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3. Purcell factor

The number of modes within the bandwidth between ω + dω and ω for free space is:

NA(ω) =
V ω2

π2c3
, (59)

while that for cavity

Nc(ω) =
κ

2π

1

((ω − ωc)
2
+
(
κ
2

)2 , (60)

The free-space spontaneous emission rate,

ΓA(ω) = 2π
V ω2

π2c3
µ2

3

ω

2h̄ϵ0V
, (61)

can be modified if we place the cavity with quality factor of Q = ω
κ and volume of V as

Γc(ωc) = 2π
2

π

Q

ω
µ2 ω

2h̄ϵ0V
, (62)

We have thus the Purcell factor

FP =
Γc

ΓA
=

3

4π2

Q

V
λ3. (63)
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