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We have been exclusively studying harmonic oscillators, which are always in the correspondence
limit displaying only mundane quantum effects [1]. The average value of the generalized position
and momentum follows the classical equations of motion and quantum mechanical features manifest
themselves in higher moments like the variance of those basic quantities. To see more direct and
interesting quantum effects it requires non-linear components, that is, anharmonic oscillators. We
will learn how anharmonic oscillators are treated as two level systems and how they behave when
they are coupled to the omnipresent Ohmic envionment.

I. TWO LEVEL SYSTEMS

A. Anharmonic potential and energy-level spacing [2]

Let us begin by examining energy-level spacings for systems with anharmonic potentials. Imagine a particle with
mass m moving under a 1-dimensional potential U(x) = A|x|k. Since the energy is given by

E =
m

2
ẋ2 + U(x), (1)

we have

dx

dt
=

√
2

m
(E − U(x)). (2)

Integration of Eq. (2) leads to

t =

√
m

2

∫
dx√

E − U(x)
+ const. (3)

From Eq. (3) the oscillation period for the particle trapped in the potential U(x) = A|x|k can be found to be

T = 4

√
m

2

∫ (E
A )

1
k

0

dx√
E −Axk

= 2
√
2mA− 1

kE
1
k− 1

2

∫ 1

0

dy√
1− yk

∝ E
1
k− 1

2 , (4)

where the upper limit of the integral
(
E
A

) 1
k in the first line comes from the turning-point condition E = Axk. We

thus recognize the peculiarity of the harmonic potential (k = 2), that is, T = const., or rather

∆E = h̄ω = h̄
2π

T
= const. (5)

On the other hand, the oscillation periods for anharmonic potentials depend on their energies. For instance, the
oscillation period for a potential U(x) = −A|x|−1 responsible associated with the inverse square law F (x) = A|x|−2

is T ∝ (−E)−
3
2 (note that the minus sign before E coming from the fact that the E is negative for the case of k < 0),
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that for a triangular potential U(x) = A|x| is T ∝ E
1
2 , and that for the infinitely deep wall potential U(x) =

(
x
l

)∞
is T ∝ E− 1

2 . These findings lead to
∆Einv = h̄ω = h̄ 2π

T ∝ (−E)
3
2 for U(x) = −A|x|−1

∆Etri = h̄ω = h̄ 2π
T ∝ E− 1

2 for U(x) = A|x|
∆Ewall = h̄ω = h̄ 2π

T ∝ E
1
2 for U(x) =

(
x
l

)∞
.

(6)

B. Bohr’s atom [3, 4]

A very basic non-linear component in the microscopic world is an atom. Now let us see how does Bohr’s atom
exemplify the anharmonic quantum paradigm. Suppose that an electron is orbiting the atomic nucleus in a circle. The

radius r is determined by the balance between the centrifugal force meΩ×(r×Ω) = mev
2

r er and the inverse-square-law

Coulomb force 1
4πϵ0

e2

r2 er, that is,

mev
2

r
=

1

4πϵ0

e2

r2
. (7)

The total energy is given by

E =
1

2
mev

2︸ ︷︷ ︸
Kinetic energy:T

+ − 1

4πϵ0

e2

r︸ ︷︷ ︸
Potential energy:U

. (8)

Since, from the virial theorem [2], the average kinetic energy T̄ can be obtained by

2T̄ = kŪ (9)

for the potential U(r) = −Ark, we have

T̄ ≡ 1

2
mev̄2

= (−1)
Ū

2
≡ 1

4πϵ0

e2

2r̄
, (10)

whose validity can also be checked by Eq. (7). The average total energy can then be written as

Ē = T̄ + Ū =
Ū

2
= − 1

4πϵ0

e2

2r
. (11)

Now the quantization of the angular momentum imposes

mevr = nh̄. (12)

Using Eqs. (7) and (12) the quantized radius is obtained as

rn =
h̄2

e2

4πϵ0
me

n2 = a0n
2, (13)

where

a0 =
h̄2

e2

4πϵ0
me

∼ 0.53× 10−10 m (14)

is the Bohr radius, a typical length scale in atomic physics, which is made up of fundamental constants. Plugging
Eq. (13) into Eq. (11) leads to the famous Bohr formula:

E = − 1

4πϵ0

e2

2a0

1

n2
= −Ry

n2
, (15)
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where

Ry ≡ 2πh̄cR∞ =
1

4πϵ0

e2

2a0
=

e4me

8(2πh̄)2ϵ20
∼ 13.6 eV (16)

is the Rydberg characteristic energy, a typical energy scale in atomic physics, which is again made up of fundamental
constants.
Let us now see the anharmonic nature of Bohr’s atom. For n ≫ 1 the energy spacing ∆En between En+1 and En

is given by

∆En = En+1 − En = −Ry

((
1

n+ 1

)2

−
(
1

n

)2
)

∼ 2Ry

n2(n+ 2)

∼ 2Ry

n3

(
=
∂E

∂n

)
=

2Ry(
−Ry

En

) 3
2

∝ (−En)
3
2 , (17)

which agrees with the general classical result Eq. (6) for the potential associated with the inverse-square-law force.
We shall now introduce one more useful constant, the fine-structure constant :

α =
e2

4πϵ0h̄c
=

e2

2ϵ0hc
=

1

2

(
1
h
e2

)(
1

cϵ0

)
=

1

2

Zvac

Rk
∼ 1

137
, (18)

where

Rk =
h

e2
∼ 25.8 kΩ (19)

Zvac =
1

cϵ0
=

√
µ0

ϵ0
∼ 377 kΩ (20)

are the impedance quantum (or the von Klitzing constant) and the impedance of vacuum, respectively. With the
fine-structure constant α, the Bohr radius a0 and the Rydberg characteristic energy Ry can be rewritten as more
meaningful forms whose dimensions manifest themselves with fundamental constants:

a0 =
1

α

h̄

mec
(21)

Ry =
α2

2
mec

2. (22)

C. Quantum description of two level systems

1. Pauli operators

The system with anharmonic potential can be treated as the two level system by exploiting the fact that each
energy spacing is unique thus by choosing two distinct energy levels |0⟩ and |1⟩, which are the energy eigenstates with
energies h̄ω0 and h̄ω1 > h̄ω0, respectively. The useful operators for the two level systems are the Pauli operators

σ̂0 = |0⟩⟨0|+ |1⟩⟨1| =
(

1 0
0 1

)
(23)

σ̂x = |1⟩⟨0|+ |0⟩⟨1| =
(

0 1
1 0

)
(24)

σ̂y = −i|1⟩⟨0|+ i|0⟩⟨1| =
(

0 −i
i 0

)
(25)

σ̂z = −|0⟩⟨0|+ |1⟩⟨1| =
(

1 0
0 −1

)
, (26)
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which satisfy the angular momentum commutation relation (SU(2) algebra)

[
σ̂i
2
,
σ̂j
2
] = iϵijk

σ̂k
2
, (27)

where ϵijk is the structure constant of SU(2). Thus σ̂x

2 ,
σ̂y

2 , and σ̂z

2 form the spin- 12 -representation of SU(2) algebra.
We shall also define here the raising and lowering operators as

Ĵ+ =
1√
2

(
σ̂x
2

+ i
σ̂y
2

)
(28)

Ĵ− =
1√
2

(
σ̂x
2

− i
σ̂y
2

)
, (29)

respectively. Then we have the following relation: [
Ĵ+, Ĵ−

]
= Ĵ3, (30)

and [
Ĵ−, Ĵ+

]
= −Ĵ3, (31)

where Ĵ3 = σ̂z

2 .

The Hamiltonian of an electron in Coulomb potential U(r) = − 1
4πϵ0

e2

r can be, within the two-level-system approx-
iamtion, written in terms of Pauli operators:

Ha =
p2

2me
− 1

4πϵ0

e2

r

≃ h̄ω0|0⟩⟨0|+ h̄ω1|1⟩⟨1|

= h̄

(
ω1 + ω0

2

)
︸ ︷︷ ︸

ΩA

σ̂0 + h̄

(
ω1 − ω0

2

)
︸ ︷︷ ︸

Ω0
2

σ̂z

= h̄ΩAσ̂0 + h̄
Ω0

2
σ̂z. (32)

From now on, we shall neglect the first term since σ̂0 commutes other Pauli operator and thus does not contribute to
the dynamics. Thus we have

Ha = h̄Ω0Ĵ3 (33)

II. EINSTEIN A AND B COEFFICIENTS

A. Master equation [5]

Let us now treat the nonlinear LCR circuit from the viewpoint of Hamiltonian formalism. We shall assume the
total Hamiltonian to be

H = Ha +Hb +HI , (34)
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where Ha, Hb, and HI are the Hamiltonians of the nonlinear LC circuit (the two level system), the transmission line
(the Ohmic environment), and their interaction (capacitive coupling), and are respectively given by

Ha = h̄Ω0Ĵ3 (35)

Hb =

∫ ∞

−∞

dω

2π
h̄ωĉ†(ω)ĉ(ω) (36)

HI = −ih̄
∫ ∞

−∞

dω

2π

(
f(ω)Ĵ+ĉ(ω)− f∗(ω)Ĵ−ĉ†(ω)

)

= −ih̄

Ĵ+

∫ ∞

−∞

dω

2π
f(ω)ĉ(ω)︸ ︷︷ ︸

R−

−Ĵ−
∫ ∞

−∞

dω

2π
f∗(ω)ĉ†(ω)︸ ︷︷ ︸
R+


= −ih̄

[
Ĵ+R− − Ĵ−R+

]
. (37)

Note that these are compared to the Eqs. (1), (2), (3), and (4) in note 2015-12-07, where we treated an LCR circuit.
We recognize the following replacements,

â ↔ Ĵ− (38)

â† ↔ Ĵ+, (39)

but otherwise the same. This fact allows us to derive (through the same argument as for deriving Eq. (45) in note
2015-12-07 ) the master equation for the nonlinear LCR circuit as

∂ρ(t)

∂t
= − i

h̄

[
h̄(Ω0 +∆+∆′)Ĵ3, ρ(t)

]
+

Γ′ + Γ

2

(
2Ĵ−ρ(t)Ĵ+ − Ĵ+Ĵ−ρ(t)− ρ(t)Ĵ+Ĵ−

)
+
Γ′

2

(
2Ĵ+ρ(t)Ĵ− − Ĵ−Ĵ+ρ(t)− ρ(t)Ĵ−Ĵ+

)
, (40)

where ρ(t) is the reduced density operator of the the nonlinear LCR circuit and

Γ =

∫ ∞

−∞

dω

2π
|f(ω)|2 δ(Ω0 − ω) = |f(Ω0)|2 (41)

Γ′ =

∫ ∞

−∞

dω

2π
|f(ω)|2 ⟨n(Ω0)⟩δ(Ω0 − ω) = |f(Ω0)|2 ⟨n(Ω0)⟩ = Γ⟨n(Ω0)⟩ (42)

are the dissipation rates and

∆ = P
∫ ∞

−∞

dω

2π

|f(ω)|2

Ω0 − ω
(43)

∆′ = P
∫ ∞

−∞

dω

2π

|f(ω)|2 ⟨n(Ω0)⟩
Ω0 − ω

(44)

are the radiative shifts. The equation assumes the Lindblad form and can be rewritten as in terms of the Lindblad
superoperator as

∂ρ(t)

∂t
= − i

h̄

[
h̄(Ω0 +∆+∆′)Ĵ3, ρ(t)

]
+

1

2
LD

[√
Γ′ + ΓĴ−

]
ρ(t) +

1

2
LD

[√
Γ′Ĵ+

]
ρ(t). (45)

Note the presence of ∆′, which is absent in the master equation for the damped harmonic oscillators (Eq. (45) or
(46) in note 2015-12-07 ). The survival of ∆′ can be traced back to the commutation relation, Eq. (30), where the
commutator is operator-valued. This is in fact the manifestation of the saturation phenomenon of two level system
and the energies of the system suffer radiative shifts.
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B. Einstein equations [5]

Let us now evaluate the master equation (40) in the basis of the Eigenstate of Ha, that is, |0⟩ and |1⟩.

dρ00(t)

dt
=

Γ + Γ′

2

(
2⟨0|Ĵ−ρ(t)Ĵ+|0⟩ − ⟨0|Ĵ+Ĵ−ρ(t)|0⟩ − ⟨0|ρ(t)Ĵ+Ĵ−|0⟩

)
+
Γ′

2

(
2⟨0|Ĵ+ρ(t)Ĵ−|0⟩ − ⟨0|Ĵ−Ĵ+ρ(t)|0⟩ − ⟨0|ρ(t)Ĵ−Ĵ+|0⟩

)
= − Γ↑︸︷︷︸

Γ′

ρ00(t) + Γ↓︸︷︷︸
Γ+Γ′

ρ11(t) (46)

dρ11(t)

dt
=

Γ + Γ′

2

(
2⟨1|Ĵ−ρ(t)Ĵ+|1⟩ − ⟨1|Ĵ+Ĵ−ρ(t)|1⟩ − ⟨1|ρ(t)Ĵ+Ĵ−|1⟩

)
+
Γ′

2

(
2⟨1|Ĵ+ρ(t)Ĵ−|1⟩ − ⟨1|Ĵ−Ĵ+ρ(t)|1⟩ − ⟨1|ρ(t)Ĵ−Ĵ+|1⟩

)
= − Γ↓︸︷︷︸

Γ+Γ′

ρ11(t) + Γ↑︸︷︷︸
Γ′

ρ00(t). (47)

These are the celebrated Einstein equations. We thus identify Γ as Einstein A coefficient, which represents the
spontaneous emission rate, and Γ as Einstein B coefficient, which is proportional to the thermal photon population
⟨n(Ω0)⟩ and represents both the absorption and the stimulated emission rates. In the steady state, we have

ρ11
ρ00

=
Γ′

Γ + Γ′ =
⟨n(Ω0)⟩

⟨n(Ω0)⟩+ 1
=

(
1

e
h̄Ω0
kBT −1

)
(

1

e
h̄Ω0
kBT −1

)
+ 1

= e
− h̄Ω0

kBT = e
− h̄Ω0

kBT , (48)

that is, two level system reaches the thermodynamic equilibrium.
Now we see that any systems (harmonic oscillators, anharmonic oscillators, and two level systems) undergo the non-

unitay evolution even when the environment is in a vacuum state. This is due to the seemingly unavoidable vacuum
fluctuation, which leads to the existance of the spontaneous emission with the rate Γ. Is this Einstein A coefficinet Γ
fundamentally limit our ability to manipulate quantum systems? Let us now inspect the Einstein A coefficinet Γ a
little bit more hoping we could find ways in which the omnipresent envionmental effect can be counteracted.

C. Dipole operator

It is time for us to face up to the reality: Our surrounding world is 3-dimensional in space. It requires us to
consider the envionment as 3-dimensinal and the resultant Bosonic modes live in (3+1)-dimensional world. To make
the complicated 3-dimensinal analysis simple, it is better to remember some group-theoretic arguments and discuss
from the viewpoint of symmetry of the environment, which is assumed to be isotropic.

1. Irreducible tensor operators [6, 7]

Although the spin- 12 -representation with Pauli operators is the simplest for SU(2) algebra, the electric dipole
operator d, which acts a major rule in spontaneous emission, is in fact a polar vector operator having odd parity. By
appreciating the characteristic symmetry property of the polar vector, the electric dipole moment d should be given
in terms of the irreducible spin-1 tensor operators. Let us define the spin-1 raising and lowering operators by

Ĵ+ =

 0 1 0
0 0 1
0 0 0

 (49)

and

Ĵ− =

 0 0 0
1 0 0
0 1 0

 , (50)
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respectively. We then find the following relation for the SU(2) algebra[
Ĵ+, Ĵ−

]
= Ĵ3, (51)

and [
Ĵ−, Ĵ+

]
= −Ĵ3, (52)

where

Ĵ3 =

 1 0 0
0 0 0
0 0 −1

 (53)

is called the Cartan generator. With these operators let us define Ĵx and Ĵy as

Ĵx =
1√
2

(
Ĵ+ + Ĵ−

)
=

1√
2

 0 1 0
1 0 1
0 1 0

 (54)

and

Ĵy =
1√
2

(
Ĵ+ + Ĵ−

)
=

1√
2

 0 −i 0
i 0 −i
0 i 0

 , (55)

respectively. We then find the following spin-1-representation of SU(2) algebra:

[Ĵi, Ĵj ] = iϵijkĴk. (56)

Here Ĵx, Ĵy, and Ĵz are called the adjoint representation of SU(2) algebra and “+1” and “-1” in the right hand side
of Eqs. (51) and (52) is called root.
The vector operator r̂ = (r̂1, r̂2, r̂3) transform under SU(2) group as the irreducible spin-1 tensor operator T 1

q with

angular momentum, 1, and magnetic quantum number, q = −1, 0, and 1. T 1
q is defined as[

Ĵ3, T
1
q

]
= q T 1

q (57)[
Ĵ±, T

1
q

]
=

√
2− q(q ± 1)

2
T 1
q±1, (58)

which can be viewed as an operator extension of the more familiar definition of angular momentum eigenstates

Ĵz|1, q⟩ = q |1, q⟩

Ĵ±|1, q⟩ =

√
2− q(q ± 1)

2
|1, q ± 1⟩. (59)

Here the Cartesian vector components (r̂1, r̂2, r̂3) and the components of the irreducible spin-1 tensor operator
(T 1

−1, T
1
0 , T

1
1 ) are related as

T 1
0 = r̂3 (60)

T 1
±1 = ∓ 1√

2
(r̂1 ± ir̂2) . (61)

Note here that the factors
√
2 in the denominators in Eqs. (58) and (59) are coming from our definition of the raising

and lowering operators, Eqs. (49) and (50), and are missing in some other literatures.
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2. Dipole operator [6, 7]

The electric dipole moment of Bohr’s atom can be written in terms of vecotr operator r̂ as

d = ernr = ea0n
2 (r̂1ex + r̂2ey + r̂3ez) (62)

with the Cartesian basis {ex, ey, ez}. More convenient form from the viewpoint of symmetry of polar vector can be
given in terms of the irreducible spin-1 tensor operators, defined in Eqs. (57) and (58), as

d = ea0n
2
(
T 1
1 e

∗
1 + T 1

0 e
∗
0 + T 1

−1e
∗
−1

)
, (63)

where {e1, e0, e−1} is the spherical basis, whose elements are given by

e1 = − 1√
2
(ex + iey) (64)

e0 = ez (65)

e−1 =
1√
2
(ex − iey) . (66)

It can be recognized that to account the odd parity
(
T 1
−1, T

1
0 , T

1
1

)
should be identified as the normalization-modified

spherical harmonics
(√

4π
3 Y1−1(θ, ϕ),

√
4π
3 Y10(θ, ϕ),

√
4π
3 Y11(θ, ϕ)

)
[3].

This is in stark contrast to the magnetic dipole operator µe for spin- 12 , which sometimes identified as two level

systes. µe can be written in terms of Pauli operators (irreducible spin-12 tensor operators) as

µe = geµB

(
σ̂x
2
ex +

σ̂y
2
ey +

σ̂z
2
ez

)
, (67)

which has the even parity and is called an axial vector. Here ge ∼ 2 is the electron spin g-factor and µB is the Bohr
magneton:

µB =
eh̄

2me
. (68)

D. Electric dipole Hamiltonian [8, 9]

We shall now survey the interaction Hamiltonian Eq. (37) once more equipped with better understanding of 3-
dimensional structure of the problem with appropriate symmetry properties. The dynamics of an electron in Bohr’s
atom in an electromagnetic environment can be formally described by the minimal-coupling Hamiltonian

H =
1

2me
[p+ eA(r)]

2
+ U(r) +HR. (69)

Under the assumption that an electron confined within a volume far smaller than the wavelength of the field (long-
wavelength approximation) we can get more user-friendly electric-dipole Hamiltonian,

H ′ =
p2

2me
+ U(r)︸ ︷︷ ︸

Atomic part: Ha

+ Hdip︸︷︷︸
Dipole selfenergy

+

(
−d · D

′(0)

ϵ0

)
︸ ︷︷ ︸

Interaction part: Hel

+ HR︸︷︷︸
Free field part

, (70)

from the minimal-coupling Hamiltonian Eq. (69) by performing a canonical transformation, the so-called Power-
Zienau-Woolley transformation. Here d is the electric dipole moment defined by Eq. (63) for Bohr’s atom. The
displacement D′(r) after the transformation is related to the transverse electric field E⊥(r) before the transformation
as

D′(r)

ϵ0
= E⊥(r). (71)

Thus the interaction Hamiltonian represents the electric-dipole interaction

Hel = −d ·E⊥(0). (72)
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Note that the atomic part Ha and the dipole self energy Hdip degenerate into Eq. (35) within the two level approxi-
mation.
More heuristic approach to the electric dipole interaction Hamiltonian Eq. (72) goes as follow [7]. The starting

point is again the minimal-coupling Hamiltonian Eq. (69). By expanding the first term we have

H =
p2

2me
+

e

2me
(p ·A+A · p) + e2

2me
A2 + U(r) +HR. (73)

Under the weak filed condition |p| ≫ |eA| the third term e2

2me
A2 can be neglected. The second term can be simplified

to

e

2me
(p ·A+A · p) = e

me
p ·A (74)

by noticing the fact that

[p ·A(r)]ψ(r) = −ih̄∇ · (A(r)ψ(r))

= −ih̄

 ∇ ·A(r)︸ ︷︷ ︸
0: Coulomb gauge

ψ(r) +−ih̄A(r) · (∇ψ(r))

= [A(r) · −ih̄∇]ψ(r)

= [A(r) · p]ψ(r), (75)

that is, p and A commute (p ·A = A · p). Substituting

p = me
dr

dt
= me

1

ih̄
[r,Ha] (76)

into Eq. (74) the transition probability from the upper state |1⟩ to lower state |0⟩ becomes

⟨0| e
me

p ·A|1⟩ =
e

ih̄
⟨0| [r,Ha] ·A|1⟩

=
e

ih̄
⟨0| (rHa −Har) |1⟩ ·A

=
e

ih̄
(h̄ω1 − h̄ω0) ⟨0|r|1⟩ ·A

= e⟨0|r|1⟩︸ ︷︷ ︸
⟨0|d|1⟩

· (−iΩ0)A︸ ︷︷ ︸
˙A=−E⊥

= ⟨0| − d ·E⊥|1⟩. (77)

Thus the second term e
me

p ·A in Eq. (73) is related to the the electric dipole Hamiltonian Hel.

E. From capacitive coupling Hamiltonian to electric dipole Hamiltonian

Comparing the capacitive cupling Hamiltonian HI in Eq. (37) and its origin, Eq. (1) in note 2015-12-14 with the
electric dipole Hamiltonian Hel in Eq. (70), we find the following correspondance:

Qs ↔ d (78)

V =
q

c
↔ −E⊥ =

Π

ϵ0
, (79)

where these relations are anticipated in Table II in note 2015-11-16. Let the relevant dipole moment which would
interacts with the electric field Eq. (82) be along ex, that is,

d = ea0n
2r̂xex = µn

(
−T 1

1 + T 1
−1

)
ex, (80)

where

µn =
ea0n

2

√
2

(81)
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is the electric dipole moment of the transition n→ n−1 [4]. Suppose also initially that the polarization of the electric
field is along x-axis. Then the transverse electric field E⊥(0, t) can be given by

E⊥(0, t) = i
∑
k

√
h̄ωk

2ϵ0V
ex

(
âke

−iωkt − â†ke
iωkt
)
. (82)

This can be obtained at once when we exploit the analogy between V = q
c and E⊥ = Π

ϵ0
, where V = q

c is written as

(see Eq. (29) in note 2015-11-30 )

V (x, t) = −i
∑
k

√
h̄ωk

2cL

(
âke

−iωkt − â†ke
iωkt
)

(83)

before taking the second continuum limit (remenber? c is the capacitance per unit length, not the speed of light!).

F. Einstein A coefficient [7]

Now that we have the proper interaction Hamiltonian Hel for the two level system coupled to the electromagnetic
environment, we can see how the vacuum fluctuation or zero-point-fluctuation of the electromagnetic field causes the
energy decay from the upper state |1⟩ of the two level system to the lower state |0⟩. The decay rate ΓA from excited
state to ground state is called Einstein’s A coefficient, explicitly. The interaction-picture interaction Hamiltonian can
then be given by

Hel = ih̄
∑
k

√
ωk

2h̄ϵ0V
µn

(
−T 1

1 âke
i(Ω0−ωk)t − T 1

−1â
†
ke

−i(Ω0−ωk)t
)
. (84)

Then, from Fermi’s golden rule Eq. (41), we have the following expression of the Einsten A coefficient:

ΓA =
∑
k

(
ωk

2h̄ϵ0V
µ2
n

) ∣∣⟨0|T 1
−1|1⟩

∣∣2 δ(Ω0 − ωk). (85)

Let us now take the second continuum limit. The task is to change
∑

k into
∫

dω
2π by properly counting the number of

modes supported by the environment. The number of modes per unit volume ρ(k) can be obtained by the following
geometric argument. Suppose the spherical shell of radius k and thickness dk in the reciprocal space. Since there are

2 polarization modes in unit cell
(
2π
L

)3
in the reciprocal space associated with the real space of volume V = L3 the

following relation holds:

2 :

(
2π

L

)3

= V ρ(k)
dk

2π
: 4πk2dk, (86)

and thus we have

ρ(k)
dk

2π
=
k2

π2
dk. (87)

The density of state with respect to ω, ρ(ω), can then be given by

ρ(ω)
dω

2π
=

ω2

π2c3
dω. (88)

Consequently the sum over k in Eq. (85) can be replaced by the integral over ω as

1

V

∑
k

δ (Ω0 − ωk)
V→∞−−−−→

∫ ∞

−∞

dk

2π
ρ(k)2πδ (Ω0 − ωk) =

∫ ∞

−∞
dk

2k2

π
δ (Ω0 − ωk)

=

∫ ∞

−∞

dω

2π
ρ(ω)2πδ (Ω0 − ω) =

∫ ∞

−∞
dω

2ω2

πc3
δ (Ω0 − ω) =

2Ω2
0

πc3
. (89)



11

Note that this procedure of changing from sum to integral implicitly involved the second continuum limit V → ∞
with

â(ω) =
â(k)√
c

= lim
V→∞

√
V âk√
c
, (90)

where â(ω) and â†(ω′) satisfy the commutation relation[
â(ω), â†(ω′)

]
=

[
â(k)√
c
,
â†(k′)√

c

]
=

2π

c
δ(k − k′) = 2πδ(ω − ω′). (91)

Plugging those into Eq. (85), we have

ΓA =
2V Ω2

0

πc3

(
Ω0

2h̄ϵ0V
µ2
n

) ∣∣⟨0|T 1
−1|1⟩

∣∣2
=

Ω3
0

πh̄ϵ0c3
µ2
n

∣∣⟨0|T 1
−1|1⟩

∣∣2 . (92)

Let us look at the part µ2
n

∣∣⟨0|T 1
−1|1⟩

∣∣2 more carefully. In terms of the irreducible tensor representation in Eq. (80)
it can be rewritten in more informative form as

µ2
n|⟨0|T 1

−1|1⟩|2 =
1

2J ′ + 1

∑
MJ

∑
M ′

J

µ2
n|⟨g, J,MJ |T 1

−1|e, J ′,M ′
J⟩|2 (93)

where the initial state is averaged over the excited state sub-levels and the final state is the sum over the possible
ground state sub-levels;

|1⟩ =
1

2J ′ + 1

∑
MJ

|e, J ′,M ′
J ⟩ (94)

|0⟩ =
∑
M ′

J

|g, J,MJ ⟩. (95)

From the Wigner-Eckart theorem, the matrix element in Eq. (93) can be rewritten in terms of the Clebsch-Gordan
coefficient as

|⟨g, J,MJ |T 1
−1|e, J ′,M ′

J ⟩|2 =
|⟨g, J ||T 1||e, J ′⟩|2

2J + 1
|⟨J ′,M ′

J ; 1,−1|J,MJ ⟩|2. (96)

where ⟨g, J ||T 1||e, J ′⟩ is called the reduced matrix element of the tensor operator T 1, which is independent on the
geometry of the system (independent on magnetic sub-levels MJ and M ′

J ). Using the following identity for the
Clebsch-Gordan coefficient,

∑
q

∑
MJ

∑
M ′

J

|⟨J ′,M ′
J ; 1, q|J,MJ ⟩|2 =

∑
MJ

∑
M ′

J

∑
q

|⟨J ′,M ′
J ; 1, q|J,MJ⟩|2


=
∑
MJ

1 = 2J + 1, (97)

we have ∑
MJ

∑
M ′

J

|⟨J ′,M ′
J ; 1,−1|J,MJ⟩|2 =

2J + 1

3
, (98)

since the concerned space is isotropic the equality in choosing particular q out of three possible value {−1, 0, 1} results.
Plugging Eqs. (96) and (98) in Eq. (93) we have

µ2
n

∣∣⟨0|T 1
−1|1⟩

∣∣2 =
1

2J ′ + 1
µ2
n

|⟨g, J ||T 1||e, J ′⟩|2

2J + 1

(
2J + 1

3

)
=

1

3
µ2
n

|⟨g, J ||T 1||e, J ′⟩|2

2J ′ + 1︸ ︷︷ ︸
1 : for J′=J+1

=
1

3
µ2
n =

1

3

(
ea0n

2

√
2

)2

. (99)
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Plugging Eqs. (99) into the form of the decay rate Eq. (92) we have the famous Einstein A coefficient:

ΓA =
µ2
nΩ

3
0

3πh̄ϵ0c3
. (100)

The Einstein A coefficient Eq. (100) tells us (1) the decay rate increases third power in ωA, which indicates the general
trend that the two level systems with wider energy gap decay faster than those with narrow gap (2) the larger the
dipole moment µ is the faster the decay rate becomes.

G. Trivia

In this juncture let me introduce the trivia regarding the Einstein A coefficient ΓA.

1. Classical electron oscillator [10]

First, the angular frequency Ω0 of Bohr’s atom for quantum number of n = 1 (the orbit radius of r1 = a0) becomes

Ω0 =
h̄

mer21
=

h̄

mea20
(101)

thus

µ1 =
ea0√
2
= e

√
h̄

2meΩ0︸ ︷︷ ︸
xzpf

= exzpf , (102)

where µ1 is the dipole moment of classical electron oscillator, an electron in a harmonic trap with the trap angular
frequency of Ω0 and the its r.m.s. displacement is zero-point-fluctuation xzpf . The radiative decay rate of the classical
electron oscillator can then be obtained by plugging µ1 of Eq. (102) into µn in Eq. (100):

Γ1 =
µ2
1Ω

3
0

3πϵ0h̄c3
=

e2Ω2
0

6πϵ0mec3
, (103)

which does not contain h̄.

2. Oscillator strength [10]

Second, the dimensionless oscillator strength Fij of the transition (with angular frequency ω) from level j down to
level i characterized by Γi→j(ω) can be defined as

Fij =
Γi→j(ω)

3Γ1(ω)
, (104)

where Γ1(ω) is the classical electron oscillator with angular frequency ω, that is,

Γ1(ω) =
e2ω2

6πϵ0mec3
, (105)

and the factor 3 in the denominator is to undo the average we have performed in Eq. (98). This quantifies the decay
rate of an atom (or an artificial atom) by comparing it with that of the classical electron oscillator.

3. Larmor formula [4]

Finally, it is instructive to see the relation between the Einstein A coefficient and the Larmor formula of radiation
power Pr emitted from the classical dipole:

h̄Ω0ΓA = h̄Ω0
µ2
nΩ

3
0

3πϵ0h̄c3
=

(
ea0n

2
√
2

)2
Ω4

0

3πϵ0c3
=

e2

6πϵ0c3
(
Ω4

0a
2
0n

4
)

=
e2

6πϵ0c3
(
Ω2

0rn
)2

=
e2

6πϵ0c3
(r̈n)

2
= Pr. (106)
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III. PROBLEM

A. Magnetic dipole transitions [3]

1. From inductive coupling Hamiltonian to magnetic dipole Hamiltonian

Derive the magnetic dipole Hamiltonian

Hmag = ih̄
∑
k

√
ωk

2h̄c2ϵ0V
µB

(
Ĵ+âke

i(Ω0−ωk)t − Ĵ−â†ke
−i(Ω0−ωk)t

)
, (107)

from the inductive cupling Hamiltonian Hj given by Eq. (63) in note 2015-11-30, where Ĵ+ and Ĵ− are defined in
Eqs. (30) and (31), respectively. Here you can exploit the following correspondences (see Table II in note 2015-11-16 ):

Φs ↔ µe (108)

I = −1

l

∂

∂x
φ ↔ −B = −∇×A. (109)

where µe is the magnetic dipole operator defined by Eq. (67).

2. Einstein A coefficient

Calculate the Einstein A coefficient ΓAm(Ω0) for the spin- 12 with the excited energy of h̄Ω0 due to magnetic dipole
interaction with isotopic electromagnetic environment by repeating the procedure outlined in Sec. II F. Convince
yourself that the ratio of ΓAm(Ω0) to ΓA(Ω0) is

ΓAm(ω)

ΓA(ω)
∼ α2, (110)

where α is the fine-structure constant given by Eq. (18).
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