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We learned how two level systems can be treated quantum mechanically, how the electric dipole
interaction emerged as the coupling term between a two level system and electromagnetic field, and
deduce Einstein’s A coefficient, a decay rate of the two level system due to the coupling to the
vacuum fluctuation of electromagnetic field surrounding it. Here we learn how a cavity changes the
density of state of the electromagnetic environment and modifies the decay rate of two level systems.
We shall study the Jaynes-Cummings model in which an atom (or an artificial atom) is coupled to
a cavity field. The coupled system exhibits a hybridized anharmonic energy-level structure called
the Jaynes-Cummings ladder. The splitting of the nominally degenerate lowest two excited states
is due to one and only one photon exchanged between two agencies, an atom and a cavity, and is
called the vacuum Rabi splitting. We shall see how these interesting quantum phenomena modify
under the realistic circumstances with ubiquitous dissipations.

I. PURCELL FACTOR

The number of modes within the bandwidth between ω + dω and ω for free space is:

NA(ω)dω = V ρ(ω)
dω

2π
=
V ω2

π2c3
dω, (1)

while that for cavity

Nc(ω)dω =
κ

2π

1

((ω − ωc)
2
+
(
κ
2

)2 , (2)

where κ is the cavity decay rate and ωc is the cavity resonance angular frequency. When resonance, we have

Nc(ω)dω
ω→ωc−−−−→ 2

π

1

κ
=

2

π

Q

ωc
, (3)

where the quality factor Q is defined by Q = ωc

κ .
The free-space spontaneous emission rate (Einsten A coefficient),

ΓA(ω) = 2π
V ω2

π2c3
µ2

3

ω

2h̄ϵ0V
, (4)

can be modified if we place the cavity with quality factor of Q and volume of V as

Γc(ωc) = 2π
2

π

Q

ωc
µ2 ωc

2h̄ϵ0V
, (5)

We have thus the Purcell factor :

FP =
Γc

ΓA
=

3

4π2

Q

V
λ3, (6)

which tells us how much the cavity enhances the spontaneous emission rate from the free-space Einsten A coefficient

ΓA. The Purcell factor becomes bigger by increasing Q and by decreasing the ratio λ3

V .
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II. CAVITY QED

A. Jaynes-Cummings model

Let us consider the simplest possible scenario: An atom (a two level system) with energy h̄ωA and dipole moment,

d =
ea0√
2
σ̂xex = ea0︸︷︷︸

µ

(
Ĵ+ + Ĵ−

)
ex, (7)

where Ĵ+ and Ĵ− are

Ĵ+ =
1√
2

(
σ̂x
2

+ i
σ̂y
2

)
(8)

Ĵ− =
1√
2

(
σ̂x
2

− i
σ̂y
2

)
, (9)

interacts with a Purcell-enhanced electromagnetic mode in a cavity

E⊥ = −i
√

h̄ωc

2ϵ0V
ex
(
â− â†

)
(10)

whose angular frequency ωc is about the same as ωA.
The celebrated Jaynes-Cummings model [1] is devised to depict this situation with an Hamiltonian

HJC = h̄ωAĴ3︸ ︷︷ ︸
atom

+ h̄ωc

(
â†â+

1

2

)
︸ ︷︷ ︸

cavity field

−ih̄g
(
Ĵ+â− Ĵ−â†

)
︸ ︷︷ ︸

−d·E⊥

, (11)

where Ĵ3 = σ̂z

2 and we took the rotating-wave approximation. Here the vacuum Rabi angular frequency can be defined
by

g ≡
µ
√

h̄ωc

2ϵ0V

h̄
= µ

√
ωc

2ϵ0h̄V
≡ Ω0

2
. (12)

Note that the dipole moment µ in Eq. (12) and the dipole moment of the circular Rydberg atom µ1 are related

by µ =
√
2µ1. We can notice that the electric dipole interaction term in Eq. (11) only connects |0⟩A|n⟩c state and

|1⟩A|n− 1⟩c state and that HJC can be block-diagonalize like

HJC =



. . .
∗ ∗
∗ ∗

∗ ∗
∗ ∗

. . .


=


. . .

Hn

Hn+1

. . .

 . (13)

Within one manifold, we have

Hn = h̄

[
1
2ωA +

(
n− 1

2

)
ωc −ig

√
n

ig
√
n − 1

2ωA +
(
n+ 1

2

)
ωc

]
. (14)

For the resonant case in which ωA = ωc ≡ ω0, the Hamiltonian Eq. (14) becomes

Hn = h̄

[
nω0 −ig

√
n

ig
√
n nω0

]
. (15)

The eigenenergies are obtained to be

E±
n = h̄ω0n± h̄g

√
n, (16)
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with respective eigenstates

|ψ(n)
± ⟩ = 1√

2
(|0⟩A|n⟩c ∓ i|1⟩A|n− 1⟩c) . (17)

The anharmonic energy level structure for atom-cavity system given by Eq, (16) is called the Jaynes-Cummings ladder,
where the nominally degenerate energy eigenstates |0⟩A|n⟩c and |1⟩A|n−1⟩c are hybridized to become non-degenerate

energy eigenstates |ψ(n)
± ⟩ whose energies are split by 2h̄g

√
n = Ω0

√
n. In particular the splitting occurs even when

n = 1, that is, the relevant manifold spanned by |0⟩A|1⟩c and |1⟩A|0⟩c. The energy splitting 2h̄g = h̄Ω0 is called the
vacuum Rabi splitting, with which the atom and the cavity field exchange one and only one photon at the rate of Ω0.
For the general case in which ωA − ωc ≡ ∆, the Hamiltonian Eq. (14) becomes

Hn = h̄

[
nωc − ∆

2 −ig
√
n

ig
√
n nωc +

∆
2

]
, (18)

and the eigenenergies are

E±
n = h̄ωcn± h̄

√
∆2

4
+ g2n, (19)

with eigenstates

|ψ(n)
± ⟩ = 1√

A±

((
∆

2
±
√

∆2

4
+ g2n

)
|0⟩A|n⟩c − ig

√
n |1⟩A|n− 1⟩c

)
, (20)

where

A± =
∆2

2
+ 2g2n±∆

√
∆2

4
+ g2n. (21)

B. Bloch-Heisenberg-Langevin equations

To be more realistic we shall now incorporate the dissipations both for the atom and the cavity field and see the
conditions in which the spectacular quantum phenomena, such as the vacuum Rabi splitting, predicted by the Jaynes-
Cummings model can be observed. By adding the extra terms responsible for the dissipations to the Jaynes-Cummings
Hamiltonian Eq. (11) we have

H = h̄ωAĴ3 + h̄ωc

(
â†â+

1

2

)
− ih̄g

(
Ĵ+â− Ĵ−â†

)
︸ ︷︷ ︸

HJC

,

− ih̄
√
ΓA

∫
dω

2π

(
Ĵ+b̂(ω)− Ĵ−b̂†(ω)

)
+

∫
dω

2π
h̄ωb̂†(ω)b̂(ω)

− ih̄
√
κ

∫
dω

2π

(
â†ĉ(ω)− âĉ†(ω)

)
+

∫
dω

2π
h̄ωĉ†(ω)ĉ(ω), (22)

where ΓA represents the atomic decay rate (the Einstein A coefficient) to the free-space continuum field b̂(ω) and κ
represents the cavity field decay rate to the continuum field ĉ(ω).
Now let us suppose that the atomic state rests predominantly on |0⟩⟨0| as is the case where all the relevant field

amplitudes are very small and thus

⟨2Ĵ3⟩ = −1. (23)

This is in fact the trick that make the otherwise nonlinear coupled equations linear ones in the end. What we have
to do is then to find the equations of motion for the cavity field â and the atomic dipole Ĵ−. For â we have

˙̂a =
i

h̄
[H, â] = −iωcâ+ gĴ− −

√
κ

∫
dω

2π
ĉ(ω), (24)
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and for Ĵ− we have

˙̂
J− =

i

h̄

[
H, Ĵ−

]
= −iωAâ+ g 2Ĵ3︸︷︷︸

−1

â−
√
ΓA

∫
dω

2π
b̂(ω)

= −iωAâ− gâ−
√
ΓA

∫
dω

2π
b̂(ω). (25)

The bath modes b̂(ω) and ĉ(ω) can be formally solved to be

b̂(ω, t) = e−iω(t−t0)b̂(ω, t0) +
√
ΓA

∫ t

t0

dτe−iω(t−τ)Ĵ−(τ) (26)

ĉ(ω, t) = e−iω(t−t0)ĉ(ω, t0) +
√
κ

∫ t

t0

dτe−iω(t−τ)â(τ). (27)

These are plugging into Eqs. (24) and (25) to have the coupled equations of motion in a rotating frame at a frequency
ω0:

˙̂a = −i

ωc +∆︸ ︷︷ ︸
ω′

c

−ω0

 â+ gĴ− − κ

2
â−

√
κĉ(t) (28)

˙̂
J− = −i

ωA +∆+∆′︸ ︷︷ ︸
ω′

A

−ω0

 Ĵ− − gâ− ΓA

2
Ĵ− −

√
ΓAb̂(t), (29)

where ĉ(t) and b̂(t) are the time-domain continuum (input) field operators:

ĉ(t) =

∫ ∞

−∞

dω

2π
ĉ(ω)e−i(ω−ω0)t (30)

b̂(t) =

∫ ∞

−∞

dω

2π
b̂(ω)e−i(ω−ω0)t. (31)

The equations (28) and (29) can be called the Bloch-Heisenberg-Langevin equations, which generalize the Jaynes-
Cummings model for including the dissipations and the resultant fluctuations, that is, the Langevin forces appeared
in the last terms in Eqs. (28) and (29).

C. Weak coupling regime and strong coupling regime [3]

Neglecting the input noise fields ĉ(t) and b̂(t), we have the following coupled equations:[
˙̂a
˙̂
J−

]
=

[
−κ

2 (1 + iΘ) g
−g −ΓA

2 (1 + i∆)

] [
â

Ĵ−

]
, (32)

where

Θ =
ω′
c − ω0

κ/2
(33)

∆ =
ω′
A − ω0

ΓA/2
(34)

are the cavity detuning parameter and the atomic detuning parameter, respectively.
To gain some insights without mess let us consider the case where Θ = ∆ = 0. The matrix in Eq. (32) can be

diagonalized for the respective hybridized eigenoperators with the eigenvalues

λ± = −κ+ ΓA

4
±

√(
κ− ΓA

4

)2

− g2, (35)

where the real parts of the eigenvalues λ± represent the decays while the imaginary parts represent the detunings
from ω0. We shall now examine some limiting cases.
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1. Weak coupling regime

First, consider the weak coupling regime g ≪ κ,ΓA. There are then two symmetric limits. The one is the broad
cavity limit (bad cavity limit), κ≫ ΓA, in which the eigenvalues becomes

λ+ ≃ −ΓA

2

(
1 +

4g2

κΓA

)
= −ΓA

2
(1 + C) (36)

λ− ≃ −κ
2

(
1− 4g2

κΓA

)
= −κ

2
(1− C) , (37)

where C = 4g2

κΓA
is called cooperativity and is omnipresent whenever the two dissipative systems couple. Note that the

cooperativity coincides with the Purcell factor:

C =
4g2

κΓA
=

4
(√

µ2 ω
2h̄ϵ0V

)2
(

ω
Q

)(
2π V ω2

π2c3
µ2

3
ω

2h̄ϵ0V

) =
3

4π2

Q

V
λ3 = Fp. (38)

In the weak coupling regime λ+ is more or less the eigenvalue of the atomic operator Ĵ− and expresses the well-
known Purcell-enhancement of the spontaneous emission due to the presence of the cavity, while λ− is more or less
the eigenvalue of the cavity field operator â and expresses the lesser known atom-inhibited cavity decay. The other
limiting case within the weak coupling regime is the broad atomic response limit, ΓA ≫ κ, with the eigenvalues

λ+ ≃ −κ
2
(1 + C) (39)

λ− ≃ −ΓA

2
(1− C) . (40)

Now λ+ is more or less the eigenvalue of the cavity field operator â and expresses the atom-enhanced cavity decay,

while λ− is more or less the eigenvalue of the atomic operator Ĵ− and expresses the cavity-inhibited spontaneous
emission.

2. Strong coupling regime

When the coupling strength g becomes greater than the cavity decay rate κ and the atomic decay rate ΓA, that is,
g > κ,ΓA, the eigenvalues in Eq. (35) becomes complex values

λ± = −κ+ ΓA

4
± iΩ0, (41)

where

Ω0 =

√
g2 −

(
κ− ΓA

4

)2

. (42)

Figures 1 and 2 respectively depict the real and imaginary part of λ± in Eq. (41) as functions of the coupling
strength g. When the coupling strength g reaches the value |κ − ΓA|/4 the nominally different decay rates of the
eigenoperators are merged and become a unique one,

Im[λ±] =
|κ− ΓA|

4
, (43)

while the nominally degenerate (zero) detunings bifurcate causing the vacuum Rabi splitting, a hallmark of the strong
coupling regime where the spectacular quantum phenomena predicted by the Jaynes-Cummings model can be seen
even with the dissipations! In other words, the dissipations suppress the vacuum Rabi splitting when the dissipations
overwhelme the coherent coupling.
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FIG. 1: The real part of the complex eigenvalues λ± (the decay rates of the eigenoperators consisting of â and Ĵ−) as a function
of the coupling strength g. Here κ/2π = 2 MHz and ΓA/2π = 1 MHz. We can see at g = 250 kHz the decay rates merged
entering the strong coupling regime.
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FIG. 2: The imaginary part of the complex eigenvalues λ± (the detunings of the eigenoperators consisting of â and Ĵ−) as a
function of the coupling strength g. Here κ/2π = 2 MHz and ΓA/2π = 1 MHz. We can see at g = 250 kHz the nominally
degenerate detunings bifurcate and further increase of g causes the vacuum Rabi splitting, a hallmark of the strong coupling
regime. Note that the dashed lines indicate the vacuum Rabi splitting in the case of no dissipations.

III. CIRCUIT QED [4]

It is apparent that the coupling strength g can be boosted by shrinking the cavity volume V . If we push the volume
V towards the ultimately small one V ∼ λ⟨x⟩2 for the dipole moment of µ = e⟨x⟩ with λ being the wavelength of the
relevant field, we have the following limit on the coupling strength:

gc = e⟨x⟩
√

ω

2h̄ϵ0λ⟨x⟩2
=

√
e2

4πϵ0h̄c
ω =

√
αω, (44)

where α is the fine-structure constant. For the natural atoms ⟨x⟩ is roughly the Bohr radius (∼ 0.1 nm) and for the
relevant optical transition λ is roughly 1µm and thus building such an ultimately small cavity is very hard, if not
impossible. For the artificial atoms with Josephson junctions, on the other hand, ⟨x⟩ can be designed to be very large
(typically ∼ 100µm). The relevant transition ω/2π for the typical Josephson atom is around 10GHz (which should
be far smaller than the superconducting gap energy) and λ is accordingly roughly 3 cm. These two facts puts the
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current micro-fabrication technology in a favorable position to build a (near-field) 1D transmission-line cavity which
achieves the ultimate volume V ∼ λ⟨x⟩2. We have been witnessing the spectacular developments of such circuit QED
systems with an artificial Josephson atom and a microwave cavity.

IV. PROBLEM

A. Artificial atom with Josephson junctions [5]

Reading Ref. [5] and show that the Josephson junction atom (nonlinear LC circuit where L is replaced by a Josephson
junction) can be considered to have an electric dipole moment of

µJ =

(
2EJ

ECP

) 1
4

e, (45)

where EJ is the Josephson energy and ECP is the charging energy given by ECP = (2e)2

CJ
with CJ being the capacitance

of the Josephson junction. By finding the typical values of EJ and ECP in the literatures and evaluate the µJ . Compare
it to the value for classical electron oscillator,

µ1 = exzpf =
ea0√
2
, (46)

introduced in Eq. (102) in note 2015-12-21 and calculate the oscillator strength of the Josephson junction atom,

F =
1

3

(
µJ

µ1

)2

. (47)
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