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We have learned how to treat the dissipative element, that is, the environment, quantum me-
chanically. Now we turn our attention to the system and learn how the dynamics of the system
is affected by the environment. We shall start by considering, from the viewpoint of Schrödinger,
a hormonic oscillator as the system, which is coupled to an Ohmic environment, and analyze the
resultant master equation for the damped harmonic oscillator.

I. ”COARSE-GRAINED” TIME EVOLUTION [1]

Let us reexamine the LCR circuit from the viewpoint of Hamiltonian formalism. We shall assume the total Hamil-
tonian to be

H = Hs +Hb +HI , (1)

where Hs, Hb, and HI are the Hamiltonians of the LC circuit (the system), the transmission line (the Ohmic
environment), and their interaction, and are respectively given by

Hs = h̄ω0â
†â (2)

Hb =

∫ ∞

−∞

dω

2π
h̄ωĉ†(ω)ĉ(ω) (3)

HI = −ih̄

∫ ∞

−∞

dω

2π

(
f(ω)â†ĉ(ω)− f∗(ω)âĉ†(ω)

)

= −ih̄

â†
∫ ∞

−∞

dω

2π
f(ω)ĉ(ω)︸ ︷︷ ︸

R−

−â

∫ ∞

−∞

dω

2π
f∗(ω)ĉ†(ω)︸ ︷︷ ︸
R+


= −ih̄

[
â†R− − âR+

]
. (4)

Here the coupling strength f(ω) has the dimension of
√
Angular frequency and will be identified to the familiar

quantity later on.
Let us analyze the coupled system by focusing on the evolution of the density operator ρ of global system. The

time evolution equation in the Schrödinger representation is

d

dt
ρ(t) =

1

ih̄
[H, ρ(t)] . (5)

In the interaction representation with respenct to Hs +Hb, it becomes

d

dt
˜ρ(t) =

1

ih̄

[
H̃I(t), ˜ρ(t)

]
, (6)

where

ρ̃(t) = ei
Hs+Hb

h̄ tρ(t)e−i
Hs+Hb

h̄ t (7)

H̃I(t) = ei
Hs+Hb

h̄ tHIe
−i

Hs+Hb
h̄ t

= −ih̄
[
â†eiω0tR̃−(t)− âe−iω0tR̃+(t)

]
, (8)
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where

R̃−(t) = ei
Hs+Hb

h̄ tR−e
−i

Hs+Hb
h̄ t =

∫ ∞

−∞

dω

2π
f(ω)ĉ(ω)e−iωt (9)

R̃+(t) = ei
Hs+Hb

h̄ tR+e
−i

Hs+Hb
h̄ t =

∫ ∞

−∞

dω

2π
f∗(ω)ĉ†(ω)eiωt. (10)

The benefit of turning to the interaction representation is that if the interaction HI is sufficiently small ρ̃(t) evolves
slowly.
By formally integrating Eq. (6) we have

ρ̃(t+∆t) = ρ̃(t) +
1

ih̄

∫ t+∆t

t

dt′
[
H̃I(t

′), ρ̃(t′)
]

(11)

which leads to the following iterative relations:

∆ρ̃(t) ≡ ρ̃(t+∆t)− ρ̃(t)

=
1

ih̄

∫ t+∆t

t

dt′
[
H̃I(t

′), ρ̃(t′)
]

=
1

ih̄

∫ t+∆t

t

dt′
[
H̃I(t

′), ρ̃(t)
]
+

(
1

ih̄

)2 ∫ t+∆t

t

dt′
∫ t′

t

dt′′
[
H̃I(t

′),
[
H̃I(t

′′), ρ̃(t′′)
]]

= · · · . (12)

Let us now assume that the interaction between the system and the environment is small and retain the terms in
Eq. (12) up to second order in H̃I :

∆ρ̃(t) =
1

ih̄

∫ t+∆t

t

dt′
[
H̃I(t

′), ρ̃(t)
]
+

(
1

ih̄

)2 ∫ t+∆t

t

dt′
∫ t′

t

dt′′
[
H̃I(t

′),
[
H̃I(t

′′), ρ̃(t)
]]

. (13)

Now we make a crucial assumption. By writting the reduced density operators σ̃(t) = Trb {ρ(t)} and σ̃b(t) =
Trs {ρ(t)} for the system (LC) and environment (R), respectively, let us assume

ρ̃(t) = σ̃(t)⊗ σ̃b(t), (14)

meaning that the correlations between the system (LC) and the environment (R) at time t are neglected as they disap-
per very quickly compared with the typical time scale ∆t we are interested in. Further assume that the environment
is not affected by the coupling to the system and thus the environment is in a stationary state, that is,

σ̃b(t) = σ̃b(0) = σb (15)

and thus

[σb,Hb] = 0. (16)

Now, by tracing out the environmental degrees of freedom we have

Trb {∆ρ̃(t)} =

(
1

ih̄

)2 ∫ t+∆t

t

dt′
∫ t′

t

dt′′Trb

{[
H̃I(t

′),
[
H̃I(t

′′), ρ̃(t)
]]}

, (17)

where

Trb {· · · } =
∑
n

⟨n| · · · |n⟩ (18)

with {|n⟩} being the complete set of states for the environment. Here the first term in Eq. (13) disappears since

Trb

{[
H̃I(t

′), ρ̃(t)
]}

= Trb

{[
H̃I(t

′), σ̃(t)⊗ σb

]}
= −ih̄

[
â†eiω0t

′
Trb

{
R̃−(t′)σb

}
− âe−iω0t

′
Trb

{
R̃+(t′)σb

}]
σ̃(t)

−ih̄σ̃(t)
[
â†eiω0t

′
Trb

{
R̃−(t′)σb

}
− âe−iω0t

′
Trb

{
R̃+(t′)σb

}]
. (19)
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In case where the environment is in the thermal equilibrium

Trb

{
R̃+(t′)σb

}
= Trb

{
R̃−(t′)σb

}
= 0, (20)

thus

Trb

{[
H̃I(t

′), ρ̃(t)
]}

= 0. (21)

The coarse-grained time evolution of σ̃(t) can then be given by

∆σ̃(t)

∆t
≡ Trb {∆ρ̃(t)}

∆t

= − 1

h̄2

1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′Trb

{[
H̃I(t

′),
[
H̃I(t

′′), σ̃(t)⊗ σb

]]}
= − 1

h̄2

1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′
[
Trb

{
H̃I(t

′)H̃I(t
′′) (σ̃(t)⊗ σb)

}
−Trb

{
H̃I(t

′) (σ̃(t)⊗ σb) H̃I(t
′′)
}

−Trb

{
H̃I(t

′′) (σ̃(t)⊗ σb) H̃I(t
′)
}

+Trb

{
(σ̃(t)⊗ σb) H̃I(t

′′)H̃I(t
′)
}]

. (22)

II. LINDBLAD FORM [1–3]

Let us further investigate the coarse-grained time evolution of the reduced density operator σ(t) in Eq. (22) to
obtain the so-called Lindblad form, the non-unitary time evolution which nonetheless preserves complete positivity
and trance of σ(t). By plugging Eq. (8) into Eq. (22) we get

∆σ̃(t)

∆t
=

1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′ [

Trb

{(
ã†(t′)R̃−(t′)− ã(t′)R̃+(t′)

)(
ã†(t′′)R̃−(t′′)− ã(t′′)R̃+(t′′)

)
(σ̃(t)⊗ σb)

}
−Trb

{(
ã†(t′)R̃−(t′)− ã(t′)R̃+(t′)

)
(σ̃(t)⊗ σb)

(
ã†(t′′)R̃−(t′′)− ã(t′′)R̃+(t′′)

)}
−Trb

{(
ã†(t′′)R̃−(t′′)− ã(t′′)R̃+(t′′)

)
(σ̃(t)⊗ σb)

(
ã†(t′)R̃−(t′)− ã(t′)R̃+(t′)

)}
+Trb

{
(σ̃(t)⊗ σb)

(
ã†(t′′)R̃−(t′′)− ã(t′′)R̃+(t′′)

)(
ã†(t′)R̃−(t′)− ã(t′)R̃+(t′)

)}
]

=
1

∆t

∫ t+∆t

t

dt′
∫ t′

t

dt′′ [

−⟨R̃−(t′)R̃+(t′′)⟩ã†(t′)ã(t′′)σ̃(t)− ⟨R̃+(t′)R̃−(t′′)⟩ã(t′)ã†(t′′)σ̃(t)
+⟨R̃−(t′′)R̃+(t′)⟩ã(t′)σ̃(t)ã†(t′′) + ⟨R̃+(t′′)R̃−(t′)⟩ã†(t′)σ̃(t)ã(t′′)
+⟨R̃−(t′)R̃+(t′′)⟩ã(t′′)σ̃(t)ã†(t′) + ⟨R̃+(t′)R̃−(t′′)⟩ã†(t′′)σ̃(t)ã(t′)
−⟨R̃−(t′′)R̃+(t′)⟩σ̃(t)ã†(t′′)ã(t′)− ⟨R̃+(t′′)R̃−(t′)⟩σ̃(t)ã(t′′)ã†(t′)

] , (23)

where

ã(t) = âe−iω0t (24)

ã†(t) = â†eiω0t (25)

and

⟨F ⟩ = Trb {Fσb} , (26)
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for any operotor F for the environment. Here the terms involving the products ⟨R̃+(t1)R̃
+(t2)⟩ and ⟨R̃−(t1)R̃

−(t2)⟩
are omitted for those produce zero when evaluating the expectation values with respect to the thermal state σb. By
putting the reduced density operator σ̃(t) outside of the integral we have

∆σ̃(t)

∆t
= − 1

∆t

[(
â†âσ̃(t)− âσ̃(t)â†

) ∫ t+∆t

t

dt′
∫ t′

t

dt′′
(
⟨R̃−(t′)R̃+(t′′)⟩eiω0(t′−t′′)

)
+
(
σ̃(t)ââ† − â†σ̃(t)â

) ∫ t+∆t

t

dt′
∫ t′

t

dt′′
(
⟨R̃+(t′′)R̃−(t′)⟩eiω0(t′−t′′)

)]
+h.c. (27)

We now calculate the two-time averages in Eq. (27). Note that from Eqs. (9) and (10) we have

⟨R̃−(t′)R̃+(t′′)⟩ =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
f(ω)f∗(ω′) ⟨ĉ(ω)ĉ†(ω′)⟩︸ ︷︷ ︸

(⟨n⟩+1)2πδ(ω−ω′)

e−iωt′eiω
′t′′

=

∫ ∞

−∞

dω

2π
|f(ω)|2 (⟨n(ω)⟩+ 1) e−iω(t′−t′′) (28)

and similarly

⟨R̃+(t′′)R̃−(t′)⟩ =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dω′

2π
f∗(ω)f(ω′) ⟨ĉ†(ω)ĉ(ω′)⟩︸ ︷︷ ︸

⟨n⟩2πδ(ω−ω′)

eiω
′t′′e−iωt′

=

∫ ∞

−∞

dω

2π
|f(ω)|2 ⟨n(ω)⟩e−iω(t′−t′′) (29)

where we used [
ĉ(ω), ĉ†(ω′)

]
= 2πδ(ω − ω′) (30)

and

⟨ĉ†(ω)ĉ(ω′)⟩ = Trb
{
ĉ†(ω)ĉ(ω′)σb

}
= 2πδ(ω − ω′)⟨n(ω)⟩. (31)

Since the two-time averages of ⟨R̃−(t′)R̃+(t′′)⟩ and ⟨R̃+(t′′)R̃−(t′)⟩ depend only on the time difference τ ≡ t′ − t′′

we can modify the domain of integration in Eq. (27) as shown as the shaded area in Fig. 1, that is,∫ t+∆t

t

dt′
∫ t′

t

dt′′ →
∫ ∆t

0

dτ

∫ t+∆t

t+τ

dt′. (32)

Τ=t'-t''

t+Τ

t

t+Dt

t t+Dt
t'

t''

FIG. 1: Domain of integration: Eq. (32).
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Τ=t'-t''

t

-Τ

t+Dt

t t+Dt

t'

t''

FIG. 2: Domain of integration: Eq. (33).

Now let us further assume that ⟨R̃−(t′)R̃+(t′− τ)⟩ and ⟨R̃+(t′− τ)R̃−(t′)⟩ are only non-zero within the narrow region
as shown as the red-shaded area in Fig. 1 where τ < τc ≪ ∆t. This allows us to extend the domain of integration as
shown as the shaded area in Fig. 2, i.e.,∫ ∆t

0

dτ

∫ t+∆t

t+τ

dt′ →
∫ ∞

0

dτ

∫ t+∆t

t

dt′ (33)

to give ∫ t+∆t

t

dt′
∫ t′

t

dt′′
(
⟨R̃−(t′)R̃+(t′′)⟩eiω0(t′−t′′)

)
= ∆t

∫ ∞

0

dτ
(
⟨R̃−(τ)R̃+(0)⟩eiω0τ

)
= ∆t

∫ ∞

0

dτ

∫ ∞

−∞

dω

2π
|f(ω)|2 (⟨n(ω)⟩+ 1) e−i(ω−ω0)τ (34)

and similarly ∫ t+∆t

t

dt′
∫ t′

t

dt′′
(
⟨R̃+(t′′)R̃−(t′)⟩eiω0(t′−t′′)

)
= ∆t

∫ ∞

0

dτ
(
⟨R̃+(0)R̃−(τ)⟩eiω0τ

)
= ∆t

∫ ∞

0

dτ

∫ ∞

−∞

dω

2π
|f(ω)|2 ⟨n(ω)⟩e−i(ω−ω0)τ . (35)

These integrals seem to diverge at ω = ω0. To prevent the divergence let us insert the convergence factor ϵ into
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Eqs. (34) and (35) and perform integrations

lim
ϵ→0+

∫ ∞

0

dτ

∫ ∞

−∞

dω

2π
|f(ω)|2 (⟨n(ω)⟩+ 1) ei[(ω0−ω)+iϵ]τ

= i

∫ ∞

−∞

dω

2π
|f(ω)|2 (⟨n(ω)⟩+ 1)

(
−i lim

ϵ→0+

∫ ∞

0

dτei[(ω0−ω)+iϵ]τ

)
= i

∫ ∞

−∞

dω

2π
|f(ω)|2 (⟨n(ω)⟩+ 1)

(
lim

ϵ→0+

1

(ω0 − ω) + iϵ

)
︸ ︷︷ ︸

G+(ω0)

(36)

lim
ϵ→0+

∫ ∞

0

dτ

∫ ∞

−∞

dω

2π
|f(ω)|2 ⟨n(ω)⟩ei[(ω−ω0)+iϵ]τ

= i

∫ ∞

−∞

dω

2π
|f(ω)|2 ⟨n(ω)⟩

(
i lim
ϵ→0+

∫ ∞

0

dτei[(ω0−ω)+iϵ]τ

)
= i

∫ ∞

−∞

dω

2π
|f(ω)|2 ⟨n(ω)⟩

(
lim

ϵ→0+

1

(ω0 − ω) + iϵ

)
︸ ︷︷ ︸

G+(ω0)

. (37)

We now invoke the so-called Dirac identity,

G+(ω0) ≡ lim
ϵ→0+

1

(ω0 − ω) + iϵ
=

P
ω0 − ω

− iπδ(ω0 − ω) (38)

to get

i

∫ ∞

−∞

dω

2π
|f(ω)|2 (⟨n(ω)⟩+ 1)G+(ω0) = i

∫ ∞

−∞

dω

2π
|f(ω)|2 (⟨n(ω)⟩+ 1)

(
P

ω0 − ω
− iπδ(ω0 − ω)

)
= iP

∫ ∞

−∞

dω

2π

|f(ω)|2 (⟨n(ω)⟩+ 1)

ω0 − ω︸ ︷︷ ︸
∆′+∆

+
1

2

∫ ∞

−∞
dω |f(ω)|2 (⟨n(ω)⟩+ 1) δ(ω0 − ω)︸ ︷︷ ︸

Γ′+Γ

= i (∆′ +∆) +
Γ′ + Γ

2
(39)

i

∫ ∞

−∞

dω

2π
|f(ω)|2 ⟨n(ω)⟩G+(ω0) = i

∫ ∞

−∞

dω

2π
|f(ω)|2 ⟨n(ω)⟩

(
P

ω0 − ω
− iπδ(ω − ω0)

)
= iP

∫ ∞

−∞

dω

2π

|f(ω)|2 ⟨n(ω)⟩
ω − ω0︸ ︷︷ ︸

∆′

+
1

2

∫ ∞

−∞
dω |f(ω)|2 ⟨n(ω)⟩δ(ω − ω0)︸ ︷︷ ︸

Γ′

= i∆′ +
Γ′

2
, (40)

where P is the principal part integral. For the function F (x) which diverges at the point x = x0, it is defined by

P
∫ b

a

F (x)dx = lim
δ→0

(∫ x0−δ

a

F (x)dx+

∫ b

x0+δ

F (x)dx

)
. (41)
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By plugging these expressions in Eq. (27) we have

∂σ̃(t)

∂t
= −

[(
â†âσ̃(t)− âσ̃(t)â†

)(
i (∆′ +∆) +

Γ′ + Γ

2

)
+
(
σ̃(t)ââ† − â†σ̃(t)â

)(
i∆′ +

Γ′

2

)
+
(
σ̃(t)â†â− âσ̃(t)â†

)(
−i (∆′ +∆) +

Γ′ + Γ

2

)
+
(
ââ†σ̃(t)− â†σ̃(t)â

)(
−i∆′ +

Γ′

2

)]
= − i

h̄

[(
h̄∆â†â

)
, σ̃(t)

]
+

Γ′ + Γ

2

(
2âσ̃(t)â† − â†âσ̃(t)− σ̃(t)â†â

)
+
Γ′

2

(
2â†σ̃(t)â− ââ†σ̃(t)− σ̃(t)ââ†

)
. (42)

Returning to the Schödinger representation we arrive at the following master equation:

∂σ(t)

∂t
= − i

h̄

[
h̄(ω0 +∆)â†â, σ(t)

]
+

Γ′ + Γ

2

(
2âσ(t)â† − â†âσ(t)− σ(t)â†â

)
+
Γ′

2

(
2â†σ(t)â− ââ†σ(t)− σ(t)ââ†

)
. (43)

We can now indentify Γ defined in Eqs. (39) and (40) by

Γ =

∫ ∞

−∞
dω |f(ω)|2 δ(ω − ω0) ∼ |f(ω0)|2 (44)

as the Einstein-A-coefficient-like spontaneous emission rate for the LC circuit. On the other hand Γ′ defined in
Eqs. (39) and (40) by

Γ′ =

∫ ∞

−∞
dω |f(ω)|2 ⟨n(ω)⟩δ(ω − ω0) ∼ |f(ω0)|2 ⟨n(ω0)⟩ = ⟨n(ω0)⟩Γ (45)

is identified as the Einstein-B -coefficient-like stimulated emission rate (and also absorption rate).
It also becomes clear that ∆ appeared in Eqs. (39) and (40) is the Lamb-shift-like spontaneous radiative shift

occuring without any photons in the environment, and ∆′ is the radiative shift due to real photons in the environment,
which in fact disappears in Eq. (43) in a course of calculation (see Eq. (42)).
The master equation, Eq. (43), assumes the Lindblad form, which, in general, is written as

∂σ(t)

∂t
= − i

h̄
[H, σ(t)] +

1

2

∑
J

(
2AJσ(t)A

†
J −A†

JAJσ(t)− σ(t)A†
JAJ

)
= − i

h̄
[H, σ(t)] +

1

2

∑
J

LD[AJ ]σ(t), (46)

with H being some hermitial operator and AJ being any operators (called collapse operators), which are responsible
for the irreversible non-unitary evolution of σ(t). The Lindblad form, however, assures to preserve the complete
positivity and trace of the reduced density operator σ(t). Here the Lindblad superoperator LD[AJ ]σ(t) is defined by

LD[AJ ]σ(t) = 2AJσ(t)A
†
J −A†

JAJσ(t)− σ(t)A†
JAJ . (47)

The master equation (43) is then written with the Lindblad superoperators as

∂σ(t)

∂t
= − i

h̄

[
h̄(ω0 +∆)â†â, σ(t)

]
+

1

2
LD

[√
Γ′ + Γâ

]
σ(t) +

1

2
LD

[√
Γ′â†

]
σ(t). (48)



8

N + 1

N

N - 1

HN +1L IG¢+GM

N IG¢+GM

HN +1LG¢

NG¢

FIG. 3: Physicsl interpretations of 4 terms in Eq. (49).

III. RATE EQUATION [1]

Now we shall see more explicitly that Γ = |f(ω0)|2 in Eq. (44) is related to the Einstein-A-coefficient-like spontaneous
emission rate. Let us first evaluate the master equation (43) in the Fock-state bases {|N⟩} for the system:

dP (N, t)

dt
=

Γ + Γ′

2

(
2⟨N |âσ(t)â†|N⟩ − ⟨N |â†âσ(t)|N⟩ − ⟨N |σ(t)â†â|N⟩

)
+
Γ′

2

(
2⟨N |â†σ(t)â|N⟩ − ⟨N |ââ†σ(t)|N⟩ − ⟨N |σ(t)ââ†|N⟩

)
= Γ↑︸︷︷︸

Γ′

NP (N − 1)− Γ↑︸︷︷︸
Γ′

(N + 1)P (N)− Γ↓︸︷︷︸
Γ+Γ′

NP (N) + Γ↓︸︷︷︸
Γ+Γ′

(N + 1)P (N + 1), (49)

where we used the abbreviations P (N, t) = ⟨N |σ(t)|N⟩, P (N − 1, t) = ⟨N − 1|σ(t)|N − 1⟩, and P (N + 1, t) =
⟨N + 1|σ(t)|N + 1⟩. Here the first term in the right hand side of Eq. (43) naturally disappers since it represents
the conservative Hamiltonian and thus contributes nothing to the dynamics of Fock states (energy eigenstates).
Consequently, this equation contains only the diagonal elements of the density operator and the effect of the radiative
shifts ∆ and ∆′ are absent. There are 4 terms in Eq. (49), each of which has a clear physical meaning as depicted in
Fig. 3. The first term represents the population gain from the (N − 1)−photon Fock state due to the absorption at
the rate of NΓ′ (the lower blue arrow in Fig. 3). The second term represents the population loss from the N−photon
Fock state due to the absorption at the rate of (N + 1)Γ′ (the upper blue arrow in Fig. 3). The third and the fourth
terms represent the spontaneous and stimulated emissions from the N−photon Fock state into the (N − 1)−photon
Fock state at the rate of N (Γ′ + Γ) (the lower red arrow in Fig. 3) and from the (N +1)−photon Fock state into the
N−photon Fock state at the rate of (N + 1) (Γ′ + Γ) (the upper red arrow in Fig. 3), respectively.
We have then the following rate equation:

d

dt
⟨N⟩ ≡

∑
N

N
P (N, t)

dt

= Γ↑
∑
N

(N + 1)P (N)− Γ↓
∑
N

NP (N),

= Γ↑⟨N + 1⟩ − Γ↓⟨N⟩
= − (Γ↓ − Γ↑) ⟨N⟩+ Γ↑

= −Γ⟨N⟩+ Γ′

= −Γ⟨N⟩+ Γ⟨n(ω0)⟩, (50)

where Eq. (45) is used in the last equation. Thus, as we anticipated, Γ can be considered as the spontaneous emission
rate. Note that the bosonic enhancement factors are canceled to get the damping rate independent on the initial
excitations. This cancellation stems form the fact that the harmonic oscillators have an equidistant evergy-level
structure. The steady state condition d

dt ⟨N⟩ = 0 gives us the steady-state occupation number of the LC photons:

N̄ =
Γ′

Γ
= ⟨n(ω0)⟩, (51)
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that is, the averaged photon number of the environment ⟨n(ω0)⟩.
The general solution of the rate equation Eq. (50) can be given by

⟨N(t)⟩ = ⟨N(0)⟩e−Γt + ⟨n(ω0)⟩
(
1− e−Γt

)
. (52)

IV. PROBLEM

A. Fokker-Planck equation [1]

In Sec. III we evaluate the master equation (43) in the Fock-state bases {|N⟩} to obtain the rate equation. When
we evaluate the master equation (43) in the coherent-state bases {|α⟩}, we arrive at the Fokker-Planck equation for
the quasi-probability density called P-function, PN (β, β∗, t). Here the P-function can be used to represent the density
operator σ(t) as

σ(t) =

∫
d2βPN (β, β∗, t)|β⟩⟨β|, (53)

where the coherent-state bases {|β⟩} are defined as

â|β⟩ = β|β⟩ (54)

⟨β|â† = β∗⟨β|. (55)

Deduce the Fokker-Planck equation

∂

∂t
PN (β, β∗, t) =

(
Γ

2
+ i (ω0 +∆)

)
∂

∂β
[βPN (β, β∗, t)]

+

(
Γ

2
− i (ω0 +∆)

)
∂

∂β∗ [β∗PN (β, β∗, t)]

+Γ′ ∂2

∂β∂β∗PN (β, β∗, t). (56)

from Eq. (43) with Eq. (53).
Check that the following Gaussian function

PN (β, β, t) =
1

π⟨n(ω0)⟩ (1− e−Γt)
exp

−

[
β − β0e

−(Γ
2 +i(ω0+∆)t)

] [
β∗ − β∗

0e
−(Γ

2 −i(ω0+∆)t)
]

⟨n(ω0)⟩ (1− e−Γt)

 (57)

constitutes the solution of Eq. (56). Note that for t = 0 it becomes δ(β−β0)δ(β
∗−β∗

0). Show the function PN (β, β∗, t)
for t = ∞.
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