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From the viewpoint of Schrödinger, we have studied a hormonic oscillator coupled to an Ohmic
environment and derive the resultant master equation for the damped harmonic oscillator. We shall
now reexamine the damped harmonic oscillator from the viewpoint of Heisenberg and discuss the
resultant quantum Heisenberg-Langevin equation.

I. REMARKS

Bofore going to the issue of treating damped harmonic oscillators from the viewpoint of Heisenberg, let us pause
for a moment and streamline what we have learned by connecting them with some important concepts.

A. Fermi’s golden rule [1]

Let us consider again the situation in which an LC circuit capacitively coupled to a 1D transmission line. The
interaction Hamiltonian is then given by (see Eq. (48) in note 2016-11-28 )

Hi = Qs(t)V (t)

=

√
h̄

2L0ω0

(
â+ â†

)
︸ ︷︷ ︸

Qs(t)

(V→(0, t) + V←(0, t))︸ ︷︷ ︸
V (x=0,t)

=

√
h̄

2L0ω0

(
â+ â†

)(
−2i

∫ ∞
0

dω

2π

√
h̄ωZp

2

(
ĉ(ω)− ĉ†(ω)

))
, (1)

where the factor “2” in the second parenthesis in the last line coming from the fact that V→(0, t) = V←(0, t) for
the open terminal at x = 0. Now we invoke the secular approximatin, with which only the terms varing slowly with
respect to the coarse-grained time ∆t are retained, to obtain

Hi = −ih̄

√
Zp

L0

∫ ∞
0

dω

2π

(
â†ĉ(ω)− âĉ†(ω)

)
= −ih̄

√
Zp

L0

∫ ∞
−∞

dω

2π

(
â†ĉ(ω)− âĉ†(ω)

)
, (2)

where the second equation is due to the fact that the integrand is only non-zero around ω ∼ ω0 so that the domain of
integration can be extended down to −∞. This Hamiltonian is indeed the one we used in Eq. (4) in note 2016-12-05
with the coupling rate f(ω) being assumed to be freqency-independent (white), that is,

f(ω) = f∗(ω) =

√
Zp

L0
=

√
Γ. (3)

This establishes the connection between the coupling constant f(ω) and the Einstein-A-coefficient like spontaneous
emission rate Γ. Indeed, we have already encontered this, that is, Eq. (44) in note 2016-12-05 says

Γ = |f(ω0)|2 =

∫ ∞
−∞

dω |f(ω)|2 δ(ω − ω0), (4)

which means that the Einstein-A-coefficient like spontaneous emission rate Γ can be obtained from the square of the
coupling rate. This is called Fermi’s golden rule.
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B. Detailed balance [1]

We then identify

Γ↓ = Γ′ + Γ = |f(ω0)|2 (⟨n(ω0)⟩+ 1)

=
Zp

L0
(⟨n(ω0)⟩+ 1)

=
1

2h̄ω0L0

2Zph̄ω0 (⟨n(ω0)⟩+ 1)︸ ︷︷ ︸
SV V (ω0)


=

1

2h̄ω0L0
SV V (ω0), (5)

and

Γ↑ = Γ′ = |f(ω0)|2 ⟨n(ω0)⟩

=
Zp

L0
⟨n(ω0)⟩

=
1

2h̄ω0L0

2Zph̄ω0⟨n(ω0)⟩︸ ︷︷ ︸
SV V (−ω0)


=

1

2h̄ω0L0
SV V (−ω0). (6)

In words, the downward decay rate Γ↓ and the upward decay rate Γ↑ are related to the noise spectral densities
SV V (ω0) and SV V (−ω0), respectively.
Now the rate equation (see Eq. (50) in note 2016-12-05 ) suggests that

d

dt
⟨N⟩ = Γ↑⟨N + 1⟩ − Γ↓⟨N⟩

=
1

2h̄ω0L0
(SV V (−ω0)⟨N + 1⟩ − SV V (−ω0)⟨N⟩) . (7)

Note that N stands for the photon number in the LC circuit and n(ω0) stands for the photon number in the 1D
transmission line at angular frequency ω0. In the steady state we have d

dt ⟨N⟩ = 0 and thus

Γ↑
Γ↓

=
SV V (−ω0)

SV V (ω0)

=
⟨N⟩

⟨N + 1⟩
=

1

e
h̄ω0
kBT −1
1

e
h̄ω0
kBT −1

+ 1
= e
− h̄ω0

kBT , (8)

where the thermal equilibrium is assumed. Equation (8) is called the detailed balance condtion, suggesting that the
asymmetry of the noise power spectral densities SV V (−ω0) and SV V (ω0) are related to the temperature T . This fact
was used in Eq. (60) in note 2016-11-28 when we deduce the classical Nyquist formula from the quantum counterpart.

II. QUANTUM LANGEVIN EQUATION

A. Classical Langevin equation [1, 2]

Let us study the situation in which an LC circuit system (a harmonic oscillator) coupled to a transmission line
bath (a boson field) characterized by the impedance Zp. The Langevin equation for the LC circuit is obtained by the
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following argument. Remembering that the right-moving voltage and the right-moving current are related as

∂

∂x
V→(x, t) =

∂

∂x
φ̇→(x, t)

=
∂

∂t

∂

∂x
φ→(x, t)︸ ︷︷ ︸
−lI→(x,t)

= −l

(
∂

∂t
I→(x, t)

)
. (9)

Thus we have the current from the following expression:

I→(x, t) = −1

l

∫ t

−∞
dτ

(
∂

∂x
V→(x, τ)

)
. (10)

By plugging

V→(x, t) = −i

∫ ∞
0

dω

2π

√
h̄ωZp

2

(
ĉ(ω)ei(kx−ωt) − h.c.

)
(11)

V←(x, t) = −i

∫ ∞
0

dω

2π

√
h̄ωZp

2

(
ĉ(ω)ei(−kx−ωt) − h.c.

)
(12)

into the constitutive equation (10), which is essentially the Newton’s law for the transmission line, we have

I→(x, t) =
V→(x, t)

Zp
(13)

I←(x, t) = −V←(x, t)

Zp
. (14)

Since the boundary between the transmission line bath and the LC circuit system at x = 0 is open we have

V (x = 0, t) = V→(x = 0, t) + V←(x = 0, t) ≡ Vout(t) + Vin(t) (15)

I(x = 0, t) = I→(x = 0, t) + I←(x = 0, t)

=
1

Zp
(V→(x = 0, t)− V←(x = 0, t)) ≡ 1

Zp
(Vout(t)− Vin(t)) . (16)

This can be considered as the classical input-output relation. By eliminating Vout(t) the voltage and the current
relation at the boundary becomes

V (x = 0, t) = ZpI(x = 0, t) + 2Vin(t). (17)

Now let us consider the following LCR circuit equation, where the resistance stems from the coupling to the semi-
infinite transmission line bath characterized by the impedance Zp. By Kirchhoff ’s law we have

Q(t)

C0
+ L0İ(x = 0, t) + V (x = 0, t) = 0. (18)

With the emf voltage V (x = 0, t) due to the semi-infinite transmission line bath, which is given by Eq. (17), the
circuit equation becomes

Q(t)

C0
+ ZpI(x = 0, t) + L0İ(x = 0, t) = −2Vin(t), (19)

which leads to the following white-noise-form Langevin equation:

Q̈(t) + Γ︸︷︷︸
Zp
L0

Q̇(t) + ω0︸︷︷︸
1

L0C0

Q(t) = −2Vin(t)

L0
, (20)

where Vin(t) and Q̇(t) are the stochastic variables, called

Vin(t) : Wiener (white noise) process

Q̇(t) = I(t) : Ornstein−Uhlenbeck process



4

respectively. Here the averaged values of Vin(t) exhibits strange traits [2]:

⟨Vin(t)⟩ = 0 (21)

⟨Vin(t)Vin(0)⟩ = δ(t)S←V V , (22)

where the spectral density S̄←V V (ω) is given by

S̄←V V (ω) =
1

4
S̄V V (ω) = Zph̄ω

(
n(ω) +

1

2

)
. (23)

The above Langevin equation, Eq. (20) is a typical example of the stochastic differential equation, for which the
more careful mathematical manipulation is required than for the ordinary differential equation [2]. Nevertheless, we
shall abuse the Fourier transform and get

Q(ω) =
1

(ω2
0 − ω2)− iωΓ

(
−2Vin(ω)

L0

)
, (24)

which nevertheless gives us the correct spectral density

SQQ(ω) =
1

(ω2
0 − ω2)

2
+ ω2Γ2

(
4S̄←V V (ω)

L2
0

)
. (25)

From the virial theorem the capacitive energy ⟨ Q2

2C0
⟩ and inductive energy ⟨ φ2

2L0
⟩ share the same energy E

2 . We thus
have the following energy spectral density for the LCR circuit:

SE(ω) = 2
SQQ(ω)

2C0
=

1

C0

1

(ω2
0 − ω2)

2
+ ω2Γ2

(
4Zph̄ω

L2
0

(
n(ω) +

1

2

))
∼ 1

4ω2
0 (ω0 − ω)

2
+ ω2

0Γ
2

(
4Zph̄ω

C0L2
0

(
n(ω) +

1

2

))
=

1

(ω0 − ω)
2
+ Γ2

4

(
Zph̄ω

ω2
0C0L2

0

(
n(ω) +

1

2

))
=

1

(ω0 − ω)
2
+ Γ2

4

(
Zp

L0
h̄ω

(
n(ω) +

1

2

))
=

Γ

(ω0 − ω)
2
+ Γ2

4

(
h̄ω

(
n(ω) +

1

2

))
. (26)

We shall be led to the same energy spectral density when we use the more general quantum Heisenberg-Langevin
approach we shall now learn. For the explicit derivation, try Problem III B.

B. Quantum Heisenberg-Langevin equation [1, 3]

Let us reexamine the LCR circuit quantum mechanically with the Heisenberg picture. We shall assume the total
Hamiltonian to be

H = Hs +Hb +Hi, (27)

where Hs, Hb, and Hi are the Hamiltonians of the LC circuit (the system), the transmission line (the Ohmic envi-
ronment), which are respectively given by

Hs = h̄ω0â
†â (28)

Hb =

∫ ∞
−∞

dω

2π
h̄ωĉ†(ω)ĉ(ω) (29)

and the interaction Hamiltonian is given by Eq. (2). The Heisenberg equation of motion for the environment is

˙̂c(ω, t) =
i

h̄
[H, ĉ(ω, t)] = −iωĉ(ω, t) +

√
Γâ(t). (30)



5

We can find the formal solution of Eq. (30) as

ĉ(ω, t) = e−iω(t−t0)ĉ(ω, t0) +
√
Γ

∫ t

t0

dτe−iω(t−τ)â(τ). (31)

The Heisenberg equation of motion for the system, on the other hand, is given by

˙̂a(t) =
i

h̄
[H, â(t)] = −iω0â(t)−

√
Γ

∫ ∞
−∞

dω

2π
ĉ(ω, t). (32)

Now let us define the slowly-varing variable α̂(t) as â(t) = α̂(t)e−iω0t. Plugging this α̂(t) in Eq. (32) we can
eliminate the first term:

˙̂α(t) = −
√
Γ

∫ ∞
−∞

dω

2π
ĉ(ω, t)eiω0t. (33)

By plugging the solution for ĉ(ω, t) in Eq. (31) into Eq. (33) we have

˙̂α(t) = −
√
Γ

∫ ∞
−∞

dω

2π
ei(ω0−ω)teiωt0 ĉ(ω, t0)− Γ

∫ ∞
−∞

dω

2π

∫ t

t0

dτei(ω0−ω)(t−τ)α̂(τ)

= −
√
Γ

∫ ∞
−∞

dω

2π
ei(ω0−ω)tĉ(ω, t0)e

iωt0︸ ︷︷ ︸
ĉ(t)

−Γ

∫ ∞
−∞

dω

2π
α̂(t)

∫ t−t0

0

dτ ′ei(ω0−ω)τ ′

= −
√
Γĉ(t)− Γ

∫ ∞
−∞

dω

2π
α̂(t)

∫ ∞
0

dτ ′ei(ω0−ω)τ ′

= −
√
Γĉ(t)− iΓ

∫ ∞
−∞

dω

2π
α̂(t)

(
−i lim

ϵ→0+

∫ ∞
0

dτei[(ω0−ω)+iϵ]τ

)
= −

√
Γĉ(t)− iΓ

∫ ∞
−∞

dω

2π
α̂(t)

(
lim

ϵ→0+

1

(ω0 − ω) + iϵ

)
︸ ︷︷ ︸

P
ω0−ω−iπδ(ω0−ω)

= −
√
Γĉ(t)− iP

∫ ∞
−∞

dω

2π

Γ

ω0 − ω︸ ︷︷ ︸
∆

α̂(t)− Γ

∫ ∞
−∞

dω

2π
πδ(ω0 − ω)︸ ︷︷ ︸
Γ
2

α̂(t)

= −
√
Γĉ(t)−

(
i∆+

Γ

2

)
α̂(t), (34)

where we put τ ′ = t − τ . Note that 1) since the variation of the slowly-varing variable α̂(τ) can be assumed to be
constant, α̂(t), and thus put outside of the integration with respect to τ ′, 2) since t0 → −∞ the domain of integration
of τ ′ can be extended to ∞. We also defined the time-domain operator ĉ(t) as

ĉ(t) =

∫ ∞
−∞

dω

2π
ĉ(ω, t0)e

iωt0e−i(ω−ω0)t =

∫ ∞
−∞

dω

2π
ĉ(ω, 0)e−i(ω−ω0)t. (35)

and we have used the similar tricks as in deriving the master equation. Equation (34) is called the quantum Heisenberg-
Langevin equation. Here note that α̂(t) and ĉ(t) have different dimensions, that is, [1] and [ 1√

time
].

1. Relation to the master equation [3]

The average value of Eq. (34) gives

d

dt
⟨α̂(t)⟩ = −

(
i∆+

Γ

2

)
⟨α̂(t)⟩ (36)
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since ⟨ĉ(t)⟩ = 0 and the first term in Eq. (34) disappears. This equation can be obtained from the master equation
Eq. (42) in note 2016-12-05, that is,

d

dt
⟨â(t)⟩ = d

dt
Tr {σ̃(t)â} = Tr

{
dσ̃(t)

dt
â

}
(37)

with

∂σ̃(t)

∂t
= − i

h̄

[
h̄∆â†â, σ̃(t)

]
+

Γ′ + Γ

2

(
2âσ̃(t)â† − â†âσ̃(t)− σ(t)â†â

)
+
Γ′

2

(
2â†σ̃(t)â− ââ†σ̃(t)− σ̃(t)ââ†

)
. (38)

Using the invariance of the trace in a circular permutation and the commutator
[
â, â†

]
= 1 we have indeed

d

dt
⟨â(t)⟩ =

⟨
dσ̃(t)

dt
â

⟩
= −i∆⟨âσ̃⟩ − Γ

2
⟨âσ̃⟩

= −
(
i∆+

Γ

2

)
⟨α̂(t)⟩. (39)

Note that the photon-number-dependent Γ′ is absent since the terms contain Γ′ are canceled out here. This exhibits
the characteristics of harmonic oscillators with equi-spaced energy level struture. This also makes it clear that the
Heisenberg’s approach is more simpler and effective than Schrödinger’s in analyzing damped harmonic oscillators.

C. The input-output theory [1]

Let us study the quantum Langevin equation a bit further. Let the system-environment Hamiltonian again be

H = Hs +Hb +Hi, (40)

with

Hs = Hs(â, â
†, b̂(ω), b̂†(ω), · · · ) (41)

Hb =

∫ ∞
−∞

dω

2π
h̄ωĉ†(ω)ĉ(ω) (42)

Hi = −ih̄
√
Γ

∫ ∞
−∞

dω

2π

(
â†ĉ(ω)− âĉ†(ω)

)
, (43)

where the system Hamiltonian now contains the other field operators b̂(ω), b̂†(ω), · · · suggesting the existence of other
decay channels.
We are interested in the effect of the environment mode specified by the operators ĉ(ω) and ĉ†(ω) on the system

which interacts not only the concerned bath mode but also the other environment modes. The equation of motion
for the envionment mode is the same as before:

˙̂c(ω, t) = −iωĉ(ω, t) +
√
Γâ(t), (44)

while that for the system becomes

˙̂a(t) =
i

h̄
[Hs, â(t)]−

√
Γ

∫ ∞
−∞

dω

2π
c(ω, t). (45)

We can find two formal solutions for Eq. (44); one of which is the one we have already encountered and we shall call
it the input mode,

ĉin(ω, t) = e−iω(t−t0)ĉ(ω, t0) +
√
Γ

∫ t

t0

dτe−iω(t−τ)â(τ), (46)
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which is defined by referring to the past time t0, the other is the output mode,

ĉout(ω, t) = e−iω(t−t1)ĉ(ω, t1)−
√
Γ

∫ t1

t

dτe−iω(t−τ)â(τ), (47)

which is defined by referring to the future time t1. Plugging those solutions in Eq. (45) we have two equations of
motions for the system:

˙̂a(t) =
i

h̄
[Hs +∆, â(t)]− Γ

2
â(t)−

√
Γĉin(t)e

−iΩt (48)

˙̂a(t) =
i

h̄
[Hs +∆, â(t)] +

Γ

2
â(t)−

√
Γĉout(t)e

−iΩt, (49)

where the time-domain operators ĉin(t) and ĉout(t) are defined by

ĉin(t)e
−iΩt =

∫ ∞
−∞

dω

2π
e−iω(t−t0)ĉ(ω, t0) (50)

ĉout(t)e
−iΩt =

∫ ∞
−∞

dω

2π
e−iω(t−t1)ĉ(ω, t1), (51)

respectively. By subtracting Eq. (49) from Eq. (48) we have

0 = −Γâ(t)−
√
Γĉin(t)e

−iΩt +
√
Γĉout(t)e

−iΩt (52)

which leads to the very useful input-output relation [1]:

ĉout(t) = ĉin(t) +
√
Γα̂(t) (53)

with â(t) = α̂(t)e−iΩt. It should be emphasized that the dimension of α̂(t) and that of ĉin(t) and ĉout(t) are differnet.
α̂(t) is the annihilation operator of LC circuit, that is, (0+1)-dimensional Bosonic field, while ĉin(t) and ĉout(t) are
the annihilation operators of 1D transmission line, that is, (1+1)-dimensional Bosonic field. At the boundary between
the (0+1)-dimensional Bosonic field and the (1+1)-dimensional Bosonic field the special kind of care represented by
Eq. (53) must be taken. The quantum Heisenberg-Langevin equation (34) and the input-output relation make up
a set of the most useful equations in treating macroscopic quantum phenomena, which is applicable to many open
quantum systems where a (0+1)-dimensional system coupled to a continuum (d+1)-dimensional environment, where
”d” is the spatial dimension of the environment.
The input-output relation (53) can be compared with the more explicit classical input-output relation for the LC

circuit with 1D transmission line:

Vout(t) = Vin(t) + ZpI(t), (54)

which can be rewritten as

Vout(t)√
Zp

=
Vin(t)√

Zp

+
√
ZpI(t), (55)

or more suggestive form with the flux variable φ(t) = L0I(t):

Vout(t)√
Zp︸ ︷︷ ︸

∼
√
h̄Ωĉout(t)e−iΩt

=
Vin(t)√

Zp︸ ︷︷ ︸
∼
√
h̄Ωĉin(t)e−iΩt

+

√
Zp

L0

φ(t)√
L0︸ ︷︷ ︸

∼
√
Γ
√
h̄Ωα̂(t)e−iΩt

, (56)

and thus reproducing the input-output relation (53);

ĉout(t) = ĉin(t) +
√
Γα̂(t). (57)

Here we used

Vin(t) = V←(x = 0, t) = −i

∫ ∞
0

dω

2π

√
h̄ωZp

2

(
ĉ(ω)e−iωt − h.c.

)
∼ −i

√
h̄ΩZp

2

(
ĉin(t)e

−iΩt − h.c.
)

(58)

Vout(t) = V→(x = 0, t) = −i

∫ 0

−∞

dω

2π

√
h̄ωZp

2

(
ĉ(ω)e−iωt − h.c.

)
∼ −i

√
h̄ΩZp

2

(
ĉout(t)e

−iΩt − h.c.
)

(59)

φ(t) = −i

√
h̄L0Ω

2

(
â− â†

)
= −i

√
h̄L0Ω

2

(
α̂e−iΩt − α̂†eiΩt

)
, (60)

and chose the terms evolving as e−iΩt.
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III. PROBLEM

A. Quantum regression theorem [3, 4]

Using the Hermitian conjugate of Eq. (34) and showing

⟨ĉ†(t)α̂(t′)⟩ = 0 (61)

with consideration of relevent time scales, prove that the two-time average ⟨α̂(t)α̂(t′)⟩ obeys the equation of motion

d

dt
⟨α̂†(t)α̂(t′)⟩ = −

(
−i∆+

Γ

2

)
⟨α̂†(t)α̂(t′)⟩. (62)

Equation (62) is in the same form as the equation of motion for the one-time average ⟨â†(t)⟩, that is,

d

dt
⟨â†(t)⟩ = −

(
−i∆+

Γ

2

)
⟨â†(t)⟩, (63)

which is the Hermitian conjugate of Eq. (36). The fact that the time evolution of the two-time averages are obtained
from the one-time averages is called the quantum regression theorem.

B. Relation between the classical Langevin equation and quantum Heisenberg-langevin equation

From Eq. (34) we have the equation of motion for â(t):

d

dt
â(t) = −

√
Γĉ(t)e−iω0t −

(
iω0 +

Γ

2

)
â(t), (64)

where ∆ is absorbed in ω0. Then using the quantum regression theorem we shall have the following time evolution of
the two-time average

d

dt
⟨â†(t)â(0)⟩ = −

(
iω0 +

Γ

2

)
⟨â†(t)â(0)⟩. (65)

Solving this differential equation, plugging it into the definition of the photon number spectral density:

Sn(Ω) =

∫ ∞
−∞

dt⟨â†(t)α̂(0)⟩eiΩt, (66)

and multiplying the unit energy h̄Ω, show that the energy spectral density Eq. (26), which was obtained by the more
explicit argument with the circuit equation, is reproduced.
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