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From the viewpoint of Schrodinger, we have studied a hormonic oscillator coupled to an Ohmic
environment and derive the resultant master equation for the damped harmonic oscillator. We shall

now reexamine the damped harmonic oscillator from the viewpoint of Heisenberg and discuss the
resultant quantum Heisenberg-Langevin equation.

I. CLASSICAL LANGEVIN EQUATION [1, 2]

Let us study the situation in which an LC circuit system (a harmonic oscillator) coupled to a transmission line
bath (a boson field) characterized by the impedance Z,. The Langevin equation for the LC circuit is obtained by the
following argument. Remembering that the right-moving voltage and the right-moving current are related as
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Thus we have the current from the following expression:
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into the constitutive equation (2), which is essentially the Newton’s law for the transmission line, we have

By plugging
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Since the boundary between the transmission line bath and the LC circuit system at = 0 is open we have

V(e=0,t) = V7 (@x=0,t) + V(2 =0,t) = Voue (t) + Vin(t) (7)
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This can be considered as the classical input-output relation. By eliminating V,,;(t) the voltage and the current
relation at the boundary becomes

V(z=0,t) = Z,I(x = 0,t) + 2Vin(t). 9)
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Now let us consider the following LCR circuit equation, where the resistance stems from the coupling to the semi-
infinite transmission line bath characterized by the impedance Z,. By Kirchhoff ’s law we have
t .
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With the emf voltage V(z = 0,t) due to the semi-infinite transmission line bath, which is given by Eq. (9), the circuit
equation becomes
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0
which leads to the following white-noise-form Langevin equation:
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where V;,(t) and Q(t) are the stochastic variables, called
Vin(t) : Wiener (white noise) process
Q(t) = I(t) : Ornstein — Uhlenbeck process
respectively. Here the averaged values of V;,(¢) exhibits strange traits [2]:
Vin(t) = 0 (13)
(Vin(0)Vin(0)) = 0(t)Svv, (14)
where the spectral density S, (w) is given by
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The above Langevin equation, Eq. (12) is a typical example of the stochastic differential equation, for which the
more careful mathematical manipulation is required than for the ordinary differential equation [2]. Nevertheless, we
shall abuse the Fourier transform and get
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which nevertheless gives us the correct spectral density
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From the virial theorem the capacitive energy (2%]> and inductive energy (77—) share the same energy g We thus

have the following energy spectral density for the LCR circuit:
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We shall be led to the same energy spectral density when we use the more general quantum Heisenberg-Langevin
approach we shall now learn. For the explicit derivation, see Appendix B.




II. QUANTUM HEISENBERG-LANGEVIN EQUATION [1, 3]

Let us reexamine the LCR circuit quantum mechanically with the Heisenberg picture. We shall assume the total
Hamiltonian to be

H=H,+ Hy+ H;, (19)

where Hg, Hyp, and H; are the Hamiltonians of the LC circuit (the system), the transmission line (the Ohmic envi-
ronment), which are respectively given by
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The Heisenberg equation of motion for the environment is
Hw,t) = % [H,é(w, t)] = —iwé(w, t) + VTa(t). (23)
We can find the formal solution of Eq. (23) as
éw,t) = e @) (w, to) + \F/ dre”=T4(7). (24)
The Heisenberg equation of motion for the system, on the other hand, is given by
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Now let us define the slowly-varing variable &(t) as a(t) = a(t)e=“ot. Plugging this &(t) in Eq. (25) we can
eliminate the first term:

T /_ ) %é(w,t)emot. (26)
By plugging the solution for é(w,t) in Eq. (24) into Eq. (26) we have
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where we put 7/ =t — 7 and used the so-called Dirac identity [4]:
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Note that 1) since the variation of the slowly-varing variable &(t — 7') is far slower than the the other and the
contribution of &(t) to the integral would dominate: thus &(t) is put outside of the integration with respect to 7/ [3];
2) since tg — —oo the domain of integration of 7/ can be extended to co. We also defined the time-domain operator
é(t) as

N < dw iwtg ,—i(w—wo)t _ = dw —i(w—wo)t

é(t) = /_Oo %c(w,to)e e =/ %c(w,O)e . (29)
Equation (27) is called the quantum Heisenberg-Langevin equation. Here note that &(t) and ¢é(t) have different
dimensions, that is, [1] and [\/JR]

A. Relation to the master equation [3]

The average value of Eq. (27) gives

d
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since (¢(t)) = 0 and the first term in Eq. (27) disappears. This equation can be obtained from the master equation.
To see this, note that
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Now the master equation reads
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Using the invariance of the trace in a circular permutation and the commutator [d, dT] = 1 we have indeed
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Note that the photon-number-dependent IV is absent since the terms contain I'V are canceled out here. This exhibits
the characteristics of harmonic oscillators with equi-spaced energy level struture. This also makes it clear that the
Heisenberg’s approach is more simpler and effective than Schrédinger’s in analyzing damped harmonic oscillators.

III. THE INPUT-OUTPUT THEORY [1]

Let us study the quantum Langevin equation a bit further. Let the system-environment Hamiltonian again be

H = H, + Hy + H,, (34)



with
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where the system Hamiltonian now contains the other field operators b(w), b (w), - - - suggesting the existence of other

decay channels.

We are interested in the effect of the environment mode specified by the operators ¢(w) and éf(w) on the system
which interacts not only the concerned bath mode but also the other environment modes. The equation of motion
for the envionment mode is the same as before:

éw, t) = —iwé(w, t) + VTa(t), (38)

while that for the system becomes
: i . > dw
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We can find two formal solutions for Eq. (38); one of which is the one we have already encountered and we shall call
it the input mode,

t
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to

which is defined by referring to the past time tgy, the other is the output mode,
Cout(w, t) = e ¢(w, ¢1) — VT / dre (=)a(7), (41)
t

which is defined by referring to the future time t;. Plugging those solutions in Eq. (39) we have two equations of
motions for the system:
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where the time-domain operators ¢, (t) and ¢, (t) are defined by
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respectively. By subtracting Eq. (43) from Eq. (42) we have
0= —Ta(t) — VTein(t)e ™ + VTéqyu(t)e (46)
which leads to the very useful input-output relation [1]:
Cout(t) = &in(t) + VT a(t) (47)

with a(t) = &(t)e~**. It should be emphasized that the dimension of &(t) and that of ¢, (t) and ¢,y (t) are differnet.
&(t) is the annihilation operator of LC circuit, that is, (041)-dimensional Bosonic field, while é;,(t) and é,.:(t) are
the annihilation operators of 1D transmission line, that is, (1+1)-dimensional Bosonic field. At the boundary between
the (041)-dimensional Bosonic field and the (1+1)-dimensional Bosonic field the special kind of care represented by
Eq. (47) must be taken. The quantum Heisenberg-Langevin equation (27) and the input-output relation make up



a set of the most useful equations in treating macroscopic quantum phenomena, which is applicable to many open
quantum systems where a (0+1)-dimensional system coupled to a continuum (d+1)-dimensional environment, where
”?d” is the spatial dimension of the environment.

The input-output relation (47) can be compared with the more explicit classical input-output relation for the LC
circuit with 1D transmission line:

Vout (t) = Vin(t) + Z,I(t), (48)

which can be rewritten as

Vout(t) _ ‘/ln(t)
N = N +/Z,1(t), (49)

or more suggestive form with the flux variable p(t) = LoI(¢):
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and thus reproducing the input-output relation (47);
Cout(t) = En(t) + VTa(t). (51)

Here we used
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Appendix A: Quantum regression theorem [3, 5]

With the Hermitian conjugate of Eq. (27)

we can show that
(@ (t)a(t) =0 (A2)
by considering the relevent time scales. Then the two-time average (& (t)&(t')) obeys the equation of motion

G 0a) = (<ia+ 3 ) (@ 0alr)). (A3)

Equation (A3) is in the same form as the equation of motion for the one-time average (af(t)), that is,

@) = (-is+5) @), (A1)

which is the Hermitian conjugate of Eq. (30). The fact that the time evolution of the two-time averages are obtained
from the one-time averages is called the quantum regression theorem.



Appendix B: Relation between the classical Langevin equation and quantum Heisenberg-langevin equation

The steady state solution of Eq. (27) for &(t) is

at)

= C
A+ L
(7ANE o b
Thus we have the average photon number in the LC circuit:

(@' (at)) = 5= mer))

Consequently, the spectral density at the angular frequency w for the LC photon can be obtained by

suw) = [ " ar(ah(T)a0)) e

r ,
AT ———n(w)d(T)e T
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= AQI;T”(W)' (B3)

Lo and behold, multiplying the unit energy fiw, we can reproduce the energy spectral density Eq. (18), which was
obtained by the more explicit argument with the circuit equation.
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