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From the viewpoints of Schrodinger and Heisenberg, we have been studying quantum mechanics.
We shall now venture into the third viewpoint based on the path integral, invented by R. F. Feynman,
to look at the quantum systems. This viewpoint is particularly suitable to see the topological aspect
of the systems. Here we shall learn the Feynman path integral method for treating simplest case,
namely, a free particle.

I. BASIC IDEA [1]

It is said [1] that Feyman’s path integral method is inspired by the mysterious remark in Dirac’s book (page 128) [2],
which states that
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exp [;/t dtL(g, cﬂ] cooresponds to (qy, tf|qi, t:), (1)

where L(q, ¢) is the classical Lagrangian of a partical of mass m in a 1-dimensional potential V' (g),

L(g-d) = 5md® — V(a), e

and (gf,tf|g;, t;) is the quantum probability amplitude for the particle to go from a space-time point (g;,t;) to (gf,ty).
The exact correspondance, in the end Feynman found, can indeed be written by the space-time integral
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is a infinite-dimensional path integral with {qs,qn—1,¢n—2," - ,¢1, ¢} representing a single path (trajectory) of the

particle in a coordinate space and S[q] is the action. Let us see how this Feynman path integral, Eq. (3), is emerged.

II. INTEGRAL OVER PATHS THROUGH PHASE SPACE |[3]

The quantum probability amplitude for the particle (g, t¢|q;, ;) in Eq. (3) was written in the Heisenberg picture.
This can be rewritten in the Schrédinger picture as

(arta5.8) = lagloxp |~ 10t = )| o )
where
H= s p+ V(g (6)
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is the Hamiltonian with p being the momentum conjugate of ¢q. Chopping the time interval ¢ = ¢ty —t; into NV > 1
steps lead to

e—EHE _ [e—%HAt}N7 (7)

where At = L. Now supposing that At is very short time interval (compared to the dominant time scale of the

N }
Hamiltonian dynamics) so that we can factorize e~ ##4% in Eq. (7) into an easily diagonalized form, that is,
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We thus have

(qp,telgits) = <qf|e—%%Ate—%V(q)A e ;Lé”iAt —FV@at |, —iE FVi(gAt |g:). (9)
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Here we introduce the resolution of identity,
1= [ dalaad [ donlp ol (10)

and insert N of them into Eq. (9) leading to
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We can simplifies Eq. (11) as

<Qf7tf|Qi7 i /H qu/Hdpk Qf|pN e FLzmAt —iV(gn- 1)At<pN|qN_1>
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Remembering that within the position representation
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Eq. (12) can be further simplified and given as a (2N-1)-dimensional integral
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where we set gy = ¢;. Note that the third term in the exponent takes care of the connection between the chunks of
the time interval. For the case of path integral of spin that term corresponds to the topological term [3].
Now by taking the continuum limit, that is, N — oo while keeping t = N At constant, we have

an ot = [ ]:H ia | kﬂ a2 exp |2 [t (B vt -0 )|
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where we used

N-1 t
At = / dt’ (16)
k=0 0

qk+1 — 4k

= ) omar (7

with = indicating the continuum limit. Equation (15) is the Hamiltonian formulation of the path integral.

III. INTEGRAL OVER PATHS THROUGH COORDINATE SPACE |[3]

The Hamiltonian formulation of the path integral, Eq. (15) represents Feynman’s idea that the quantum probability
amplitude (gf,tf|g;,t;) can be obtained by summing over all possible paths in the phase space. There is an analogous
formula based on Lagrangian and the philosophy is to get {(qr,ts|qg;,t;) by summing over all possible paths in the
configuration space. To this end, we just need to carry out the integration over Dp in Eq. (15). This can be done by
the following procedure. First, rewrite the path integral as

(qr,trlgi ti) =/qu><p [—;/Ot dt’V(Q)} /Dp exp [—;/Ot dr' (5; —pc})} ; (18)

and recognize that the second integrand is quadratic in p. Second, to execute the integration over p with Gaussian
integration (see Appendix) go back to the finite-dimensional integral form,
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where
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Third, perform the Gaussian integration (see Eq. (A4)):

(%)N/dpeXp {_; (" Ap) +ij} _ (%)%exp l_;mé <—;mq'k2)] : (23)

Here we used the following trick (inverse of Hubbard-Stratonovich transformation). First, by shifting the integration
vector according to

p—p+Aj, (24)

the left-hand-side of Eq. (23) becomes
1 1T 1. . 1.
/dpeXp {—2 (P+AY) Alp+AT)+5" (p+ A7)
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Next, by the further variable transformation
p — Op, (26)

the above equation becomes
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which is equivalent to the right-hand-side of Eq. (23). Finally, by taking the continuum limit again we can complete
the integration over Dp as

; t 2 N : t
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By plugging Eq. (28) into Eq. (18) we rearch the same conclusion as Feynman, i.e., Eq. (3)!

A. Example: free particle

Having get the beautiful formula Eq. (3), this formula per se is little use. Consider the the simplest example, free
particle with mass m. In this case the Hamiltonian is

2

p
H=—. 29
o (29)
We shall now see that even in this simplest case the calculation of Gaec(qs,¢ist) = (qf,tf]q:, ;) with the Feynman
path integral method is rather clumsy and cumbersome. We shall see the true power of the Feynman path integral

method later on.

To avoid the divergence problem inherent in the path integral in the continuum limit [3], the starting point to get

the formula of Gee(gy,¢i;t) is again the discretized finite-dimensional integral, Eq (14) with V(gx) = 0:
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Here we notice that the integrations over {ql, G2, ,qn—1} are separately perfermed and
i
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for k=1,2,--- N — 1. Thus Eq. (30) becomes
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Performing the integration over py we have
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Then performing the integratlon over py—1 we have
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Iterating this integration over py up to k = 2 leads to
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where ¢o = ¢; and ¢n = ¢¢. This is the Gaussian-form integral with respect to p;. Performing the Gaussian integration
over p; (see Eq. (A2)) we have

Gfree(qf7 qis t)
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=
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where the step function, O(t), is introduced to account for the causality. Note that this is like a solution of a classical

diffusion equation with the diffusion constant D = 5.



B. Example: free particle in momentum representation

2
Consider again the path integral of a free particle with mass m with H = £-—. This time, however, we are interested
in a form in the momentum representation, that is, (p’, ¢|p,0), which can be given by

Wt 0) = ot [ el 06t [ dala.0)(a.0119.0)
1 1
_ 1yt L i v
= /dq/dq (q',tlq,0) (%h exp | = (rg—p'd)| |- (37)
Plugging Eq. (35) into Eq. (37) we have
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This is indeed the sensible result: under the free particle hamiltonian H = Z- the linear momentum is conserved and
the time evolution of the eigenstate |p,0) acquires the dynamical phase factor e~#H* during time .

Appendix A: Gaussian integration

First, some mathematics. The most fundamental Gaussian integration is

e 2
/ dre=397" = |21 (A1)
oo a
An interesting and useful Gaussian integration is
> — Loz 4bx 27 »2
dzre™ 2 =4/ —e2= (A2)
e a
The Multi-dimensional expansion of Eq. (A1) is
> N 1
/ dve 3VTAY — (o) (A3)
“oo det [A]
and that of Eq. (A2) is
/ dve—3VTAVL]V _ (271-)% 1 e%jTAflj, (A4)
—oo det [A]
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