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The true power of the Feynman path integral method can be seen when the semi-classical limits
h — 0 of quantum theories are dealt with. This includes the situation in which a macroscopic objest
being rest at a classical equilibrium position and the quantum fluctuations around it are asked. Here
we shall learn the Feynman path integral method for treating a massive particle in a well, i.e., a
simple harmonic oscillator.

I. STATIONARY PHASE APPROXIMATION TO THE PATH INTEGRAL [1]

We learned that the quantum probability amplitude for the particle to go from a space-time point (g;, ;) to (gy,ty)
(gf,tflgi,ti) can be obtained by Feynman path integral:
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where L(q, q) is the classical Lagrangian of a partical of mass m in a 1-dimensional potential V' (q),
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L(g,d) = 5md* = V(a), (2)
and
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is a infinite-dimensional path integral with {qs,qn—1,qn—2, - ,q1, ¢} representing a single path (trajectory) of the

particle in a coordinate space and S[q] is the action. The true power of the Feynman path integral method can be
seen when the semi-classical limits of quantum theories are dealt with.

To see how the solutions of classical equations of motion appear in the path integral, let us explore the stationary
phase (saddle-point) approximation to the path integral. The first step is to find the solutions of the classical equation
of motion associated with the Lagrangian L(q, ¢), that is, the Euler-Lagrange equation;

d <5L(q,d)> ~ 9L(g.4)
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This follows from Hamilton’s principle, which states that the unique classical path g is determined by minimizing
the action S[q] = fttvf dtL(q,q). For L(q,¢) in Eq. (2) it is given by

. V(g

As the second step, let g be a only solution of Eq. (5) and set ¢ = g +7. The action S[q] = fot dt'L(q,q) in Eq. (1)
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can then be Taylor-expanded as
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where 6;1[(‘1751 = 0 is ensured by the classical solution ¢,. Here 55 [(t?l)] and % are the functional derivatives.
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The meaning of the functional derivatives can be made clear latter on. Finally, by plugging Eq. (6) into Eq. (1) we
have the semiclassical (sationary phase, or, saddle-point) approximation to the path integral:
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classical path quantum fluctuation

This semiclassical approximation, Eq. (7), appears to be very appealing: the classical path associated with the classical
action S[q.] are embellished with the quantum fluctuation. Note that the quantum fluctuation is now completely
described by c-numbers as opposed to quantum operators.

To make things more explicit let us repeat the same calculation with the form L(q, ¢) in Eq. (2). By expanding the
action S[gq| in r(t) explicitly we have
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where, in the third line, we performed the integrations by part,
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By compared with Eq. (6) we obtain the followmg relation:
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A. Example: quantum harmonic oscillator

Let us apply the above argument to a massive particle in a harmonic potential V' = %k‘qz, that is, a harmonic

oscillator. The classical equation of motion is mg + kg = 0. Imposing the boundary conditions ¢(0) = ¢(t) = 0, the



solution of the classical motion is obiously ¢, = 0. We thus have
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where w = \/% is the eigenfrequency of the oscillator. This integral is again Gaussian form, so we can perform the
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Gaussian integration. To perform the integral let us tentatively assume the differential operator —%2 ( d(fz + w2) be

2
a finite-dimensional matrix A. The integral then becomes familiar one as Eq. (A3) and get
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with A" absorbed several constants, which may be divergent after taking the continuum limit, though. Then the
question is; what is det [A]? The answer can be found by expressing A in terms of eigenvalues, that is,

Guo(0,05t) =N (13)
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The eigestates v,, are given by
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with the eigenvalues
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for n =1,2,---00. Thus the determinant of A is given by
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We then notice that \/dlw is obtained from the infinite product of (—w2 + ("T”) ) , each of which is divergent
et

for %% = w, a very alarming situation!

To circumvent the calculation of the dangerous determinant explicitly, we can exploit the well-behaved result
obtained for a free particle. Indeed, Gfee(0,0;t) is the special case of G (0,0;t) for V(¢) = 0, that is, w = 0. Let

us evaluate the following quantity,
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The quantity inside the parentheses in Eq. (18) gives
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Thus, with Eq.(18), Guo(0,0;t) bocomes
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where we used
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which we obtained previously.

Appendix A: Gaussian integration

First, some mathematics. The most fundamental Gaussian integration is
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An interesting and useful Gaussian integration is
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The Multi-dimensional expansion of Eq. (A1) is
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and that of Eq. (A2) is
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