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We shall look at the electric polarization for 1D crystal from the view point of Berry phase. We
find that the electric polarization not only reflects the local charge density ρ but also the global
topology of the band which encoded in the phase of the Bloch wave functions and thus in the Berry
connection. Here, the Zak phase, which is basically the Berry phase obtained by integrating the
Berry connection across the Brillouin zone, plays an important role. The Zak phase turns out to be
taken only two values (modulo 2π), 0 or π, when the crystal has the spatial symmetry of inversion.

I. ELECTRIC POLARIZATION

The total charge in a dielectric sample is zero when the sample is electrically neutral. Thus, the volume integral of
the macroscopically averaged charge density ρ is zero, that is,∫

V
ρdV = 0. (1)

This suggests [1] that ρ can be given by

ρ = −∇ · P , (2)

where P is a vector quantity called the electric polarization, which has only nonzero vector inside the sample. We
can see why this is true by ∫

V
ρdV = −

∫
V
(∇ · P ) dV

= −
∫
A
P dS = 0 (3)

where the integration volume V in the first line covers the entire smaple and the integration area A is the surface
enclosing the volume V, which means the area A is not touching the sample and the last equality results.
On the other hand, the continuity equation tells us

∂ρ

∂t
+∇ · j = 0. (4)

From Eqs. (2) and (4), we have

∇ ·
(
∂P

∂t
− j

)
= 0. (5)

Apart from the divergent-free terms (the so-called magnetization current) the chnage of the electric polarization can
thus be given by

∆P = P (T )− P (0) =

∫ T

0

jdt. (6)

In 1993, King-Smith and Vanderbilt suggested [2] that the polarization current j appears in Eq. (6) is nothing but
the Berry-curvature induced adiabatic current we have derived in the context of the Thouless pumping [3]. Let us see
this in more detail in the next section.
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II. ZAK PHASE AND THE MODERN THEORY OF ELECTRIC POLARIZATION [4, 5]

What King-Smith and Vanderbilt discovered [2] is the overlooked link between the band topology of dielectrics and
their electric polarization. The important message here is that the electric polarization not only reflects the local
charge density ρ but also the global topology of the band which encoded in the phase of the Bloch wave functions and
thus in the Berry connection.
For the 1D crystal, the Berry-curvature induced adiabatic current can be given by

j(t) = −e
∑
n

∫
BZ

dk

2π
Ωk,n(t), (7)

where Ωk,n is the Berry curvature. The chnage of the electric polarization can thus be rewritten as

∆P = −e
∑
n

∫ T

0

dt

∫
BZ

dk

2π
Ωk,n(t)

= −e
∑
n

∫ 1

0

dλ

∫
BZ

dk

2π
Ωk,n(λ), (8)

where, in the second equation, we explicitly introduced a normalized adiabatic parameter λ(t) with λ(0) = 0 and
λ(T ) = 1. We can thus recognize that the electric polarization is proportional to the Berry phase for which the
parameter space is spaned by λ and k, as for the Thouless pumping, and is not a torus but a cylinder.
Using the Berry connections the Berry curvature Ωk,n(λ) is rewritten as

Ωk,n(λ) =

[
∂
∂k
∂
∂λ

]
×

[
A

(n)
k

A
(n)
λ

]

=
∂A

(n)
λ

∂k
−

∂A
(n)
k

∂λ

= −i

(
∂

∂k

⟨
uk,n(λ)

∣∣∣∣ ∂∂λ
∣∣∣∣uk,n(λ)

⟩
− ∂

∂λ

⟨
uk,n(λ)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(λ)

⟩)
. (9)
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FIG. 1: Path C is starting from (0, 0) → (1, 0) → (1, 2π
a
) → (0, 2π

a
) → (0, 0) in λ-k space.

Then the change of the polarization as the control parameter λ changes from 0 to 1 is thus given by the line integral
along the path C shown in Fig. 1:

∆P = − e

2π

∑
n

∫ 1

0

dλ

∫ 2π
2

0

dk

(
∂A

(n)
λ

∂k
−

∂A
(n)
k

∂λ

)

= i
e

2π

∑
n

(∫ 1

0

dλ

⟨
u0,n(λ)

∣∣∣∣ ∂∂λ
∣∣∣∣u0,n(λ)

⟩
+

∫ 2π
a

0

dk

⟨
uk,n(1)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(1)

⟩

+

∫ 0

1

dλ

⟨
u 2π

a ,n(λ)

∣∣∣∣ ∂∂λ
∣∣∣∣u 2π

a ,n(λ)

⟩
+

∫ 0

2π
a

dk

⟨
uk,n(0)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(0)

⟩)
. (10)
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Here, we exploit the periodic gauge, ∣∣∣u 2π
a ,n(λ)

⟩
= e−i 2π

a x |u0,n(λ)⟩ , (11)

to obtain

∆P = i
e

2π

∑
n

(∫ 1

0

dλ

⟨
u0,n(λ)

∣∣∣∣ ∂∂λ
∣∣∣∣u0,n(λ)

⟩
+

∫ 2π
a

0

dk

⟨
uk,n(1)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(1)

⟩

+

∫ 0

1

dλ

⟨
u0,n(λ)e

i 2π
a x

∣∣∣∣ ∂∂λ
∣∣∣∣e−i 2π

a xu0,n(λ)

⟩
+

∫ 0

2π
a

dk

⟨
uk,n(0)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(0)

⟩)

= i
e

2π

∑
n

(∫ 2π
a

0

dk

⟨
uk,n(1)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(1)

⟩
+

∫ 0

2π
a

dk

⟨
uk,n(0)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(0)

⟩)
. (12)

The important point here is that with the periodic gauge the line integral of the Berry connection along the lower red
line in Fig. 1 cancels out the one along the upper red line in Fig. 1 Thus we arrive at the so-called modern theory of
electric polarization [4, 5]:

∆P ≡ P (1)− P (0)

= − e

2π

∑
n


∫ 2π

a

0

dk

(
−i

⟨
uk,n(1)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(1)

⟩)
︸ ︷︷ ︸

ϕn(1)

−
∑
n

∫ 0

2π
a

dk

(
−i

⟨
uk,n(0)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(0)

⟩)
︸ ︷︷ ︸

ϕn(0)

 . (13)

This means that the electric polarization can be obtained by integrating the Berry connection over the Brillouin zone,
which is called the Zak phase [6],

ϕn(λ) =

∫ 2π
a

0

dk

(
−i

⟨
uk,n(λ)

∣∣∣∣ ∂∂k
∣∣∣∣uk,n(λ)

⟩)
. (14)

Namely, the electric polarization can thus be given by marvelously simple form with the Zak phases ϕn(λ) for the
filled band n:

P (λ) = − e

2π

∑
n

ϕn(λ). (15)

III. SYMMETRY AND ZAK PHASE [4, 5]

When the parameter λ goes circle like 0 → 1 → 0 we find that the situation is the one encountered when analyzing
the Thouless pumping. The relation between the Zak phase ϕn(λ) and the number of charges transported by the n-th
band per one-cycle cn is

cn =
1

2π
(ϕn(0 = 0 → 1 → 0)− ϕn(0)) . (16)

Since cn = Z where Z is any integer we can conclude that the Zak phase ϕn(λ) is only defined up to modulo 2π. This
in turn means the electric polarization P (λ) is also defined up to modulo e, that is,

P (λ) = −e

(∑
n

ϕn(λ)

2π
+ Z

)
. (17)

Now suppose that the 1D crystal that we have been interested in has the spatial symmetry of inversion. The
symmetry constrains the topology of the Bloch wave function and thus constrains the Zak phase. Let us see this
interesting phenomenon. For simplicity, we consider one band problem. Under the spatial inversion, the electric
polarization changes its sign, that is,

P → −P. (18)
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However, these two polarization has to have the same physical contents to assume the spatial symmetry of inversion.
This is possible either when P = 0 or when P = −P + e. These cases corresponds to ϕ = 0 or ϕ = π, respectively. We
thus find that the Zak phase for the 1D crystal with the spatial symmetry of inversion only takes 0 or π. Moreover,
the electric polarization is either P = 0 or P = e

2 .
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