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Through these problems, we explore the graphene and its topological band structure.

I. WANNIER STATES AND TIGHT-BINDING SYSTEM [1]

For electrons in periodic potential the Bloch states diagonalize the single-particle hamitonian H0, that is,

H0 =
∑
k

ϵkâ
†
k
âk, (1)

where âk and â†
k

are the annihilation and creation operators for an electron in a Bloch state indexed by the wave

vector k. Let us see this problem in the real space indexed by the atomic site Ri as opposed to k. To this end, it

is helpful to introduce the so-called Wannier states, for which the annihilation and creation operators, âi and â†i are
respectively defined by

âi =
1√
N

∑
k

eik·Ri âk (2)

â†i =
1√
N

∑
k

e−ik·Ri â†
k
, (3)

where N is the number of the atomic sites. The inverse of each expression reads

âk =
1√
N

∑
i

e−ik·Ri âi (4)

â†
k

=
1√
N

∑
i

eik·Ri â†i . (5)

With these expressions the Hamiltonian Eq. (1) becomes

H0 =
1

N

∑
ij

∑
k

eik·(Ri−Rj)ϵkâ
†
i âj =

∑
ij

â†i tij âj , (6)

where we have defined the hopping matrix tij as

tij =
1

N

∑
k

ϵke
ik·(Ri−Rj). (7)

Equation (6) is called tight-binding Hamiltonian and describes electrons hopping from one lattice site i to the other
j, whose strength is dictated by the hopping matrix element tij in Eq. (7). You can see that when ϵk = const., that
is, single-particle Hamiltonian H0 merely represents isolated atom and index k is irrelevant, then tij = δij and there
are no hopping. The dispersion ϵk ̸= const. is thus pertinent to realize the inter-atomic hopping.

II. 2D SQUARE LATTICE - A TOY MODEL [1]

As an concrete example let us take a 2D square lattice with the lattice constant a.
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Problem 1� �
(1) By setting tij = −t for i and j being nearest neighbors and zero otherwise, show that the tight binding
Hamiltonian Eq. (6) can be diagonalized in terms of Bloch states and becomes

H0 =
∑
kx,ky

[−2t (cos(kxa) + cos(kya))] â
†
kx,ky

âkx,ky . (8)

The energy suface in Brillouin zone spanned by kx and ky with −π
a ≤ kx ≤ π

a and −π
a ≤ ky ≤ π

a is shown in
Fig. 1.� �

FIG. 1: Energy suface ϵ/t = −2 (cos(kxa) + cos(kya)) of an electron in the 2D square lattice dipicted in Brillouin zone spanned
by kx and ky.

III. 2D HEXAGONAL LATTICE -GRAPHENE [1, 2]

Graphene is a single layer of graphite with 2D hexagonal lattice of carbon atoms. Graphene shows a number of
interesting physics which basically originate from its band structure. From each carbon atom, 2s, 2px, and 2py orbits
hybridize and they form the so-called σ-band as sp2 hybrids. On the other hand, pz orbits do not participate this
hybridization and form the so-called π-band. Usually, the Fermi energy lays in the π-band and most of the interesting
properties of graphene can thus be attributed to electrons in the π-band, which show a linear dispersion and behave
like 2D Dirac fermions. Hereby we study this peculiar band dispersion with tight-binging approach.
The unit-cell of the graphene contains two atoms and spanned by two vectors

a1 =

(√
3

2
a,

1

2
a

)
, (9)

a2 =

(√
3

2
a,−1

2
a

)
, (10)

(11)

as shown in Fig. 2. By setting tij = −t for i and j being nearest neighbors and zero otherwise, the monatomic
tight-binding Hamiltonian Eq. (6) can be modified into the the bi-atomic nearest neighbor tight-binding Hamiltonian
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FIG. 2: 2D hexagonal lattice of carbon atoms. The black and red points show the inequivalent two atomic sites, A-site and
B-site, respectively.

H = −t
∑
⟨i,j⟩

(
â†i,j (bi,j + bi+1,j+1 + bi+1,j−1) + h.c.

)
, (12)

where âij (b̂ij) is the anninilation operator for the electron at (i, j) lattice point of A-site (B-site) and â†ij (b̂†ij) is the
corresponding creation operator.

Problem 2� �
(1) Show that the tight binding Hamiltonian Eq. (12) can be modified into

H = −t
∑
kx,ky

[
â†kx,ky

b̂†kx,ky

] [
0 f(kx, ky)

f(kx, ky)
∗ 0

] [
âkx,ky

b̂kx,ky

]
, (13)

where

f(kx, ky) = e
−ikx

a√
3 + 2e

ikx
a

2
√

3 cos

(
ky
2

)
. (14)

By applying the proper unitay transformation, the Hamiltonian Eq. (13) can be diagonalized. The energy surfaces
are obtained as

ϵk/t = ±
√
f(kx, ky)f(kx, ky)∗ = 1 + 4 cos

(
kx

√
3a

2

)
cos

(
kya

2

)
+ 4 cos2

(
kxa

2

)
, (15)

which are shown in Fig. 3.� �
IV. DIRAC CONE AND DIRAC MONOPOLE [2]

We are now in a position to see the connection between the band structure shown in Fig. 3 and the topology. The
2D hexagonal lattice in real space shown in Fig. 2 can be cast into the 2D hexagonal lattice in reciprocal space, that
is, the Brillouin zone of the 2D hexagonal lattice, as shown in Fig. 4. We see that at K = (kx, ky) =

2π
a

(
0,−2

3

)
and

K ′ = (kx, ky) =
2π
a

(
0, 2

3

)
points in the Fig. 4, the two enery surfaces touch as shown in Fig. 3 (they look not touching

but with higher resolution they are indeed touching).
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FIG. 3: Energy suface ϵk/t = ±
√

f(kx, ky)f(kx, ky)∗ = 1 + 4 cos
(
kx

√
3a
2

)
cos

(
kya

2

)
+ 4 cos2

(
kxa
2

)
of an electron in the 2D

hexagonal lattice dipicted in Brillouin zone spanned by kx and ky.

Problem 3� �
(1) By expanding Eq. (12) around the K point, show that the tight binding Hamiltonian Eq. (12) can be
approximated as

HD = −h̄v
∑
k̃x,k̃y

[
â†
k̃x,k̃y

b̂†
k̃x,k̃y

] [
0 k̃x − ik̃y

k̃x + ik̃y 0

] [
âk̃x,k̃y

b̂k̃x,k̃y

]

= −h̄v
∑
k̃x,k̃y

[
â†
k̃x,k̃y

b̂†
k̃x,k̃y

] (
σxk̃x + σyk̃y

)[ âk̃x,k̃y

b̂k̃x,k̃y

]
, (16)

where

v =

√
3at

2h̄
. (17)

(2) By expanding Eq. (12), on the other hand, around the K ′ point, show that the tight binding Hamiltonian
Eq. (12) can be approximated as

HD = h̄v
∑
k̃x,k̃y

[
â†
k̃x,k̃y

b̂†
k̃x,k̃y

] (
σxk̃x + σyk̃y

)[ âk̃x,k̃y

b̂k̃x,k̃y

]
. (18)

This Hamiltonian is formally equivalent to that for the massless Dirac particles. The masslessness manifests
itself as the linear dispersion, that is, HD ∝ k̃i. The cones around K and K ′ points suppended by k̃x and k̃y as
shown in Fig. 3 are called the Dirac cones.� �
Now let us seek the connection between the Dirac cone and the Dirac monopole, the later of which we have learned in

the Lecture. To see this connection, we shall reverse the usual second quantization procedure, that is, from the second
quantized Hamiltonian to the single-particle Hamiltonian. Since the relation between the single-particle Hamiltonian
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FIG. 4: 2D hexagonal lattice in reciprocal space.

HD and the second quantized Hamilotionian HD is [1]

HD =
∑
k̃x,k̃y

[
â†
k̃x,k̃y

b̂†
k̃x,k̃y

]
HD

[
âk̃x,k̃y

b̂k̃x,k̃y

]
, (19)

we have

HD = −h̄v
(
σxk̃x + σyk̃y

)
= −h̄vσ · k̃ (20)

for K Dirac particle and

HD = h̄v
(
σxk̃x + σyk̃y

)
= h̄vσ · k̃ (21)

for K ′ Dirac particle. These Hamiltonians are formally equivalent to the one we encountered in the Lecture [Eq. (8)
in the Lecture 3: Path integral for spin], that is,

H = h̄γσ ·B. (22)

Thus the Dirac electrons moving adiabatically around theK andK ′ points in the Brillouin zone are formally equivalent
to a charged particle moving adiabatically around the Dirac monopole!
Following the argument we have delineated in the Lecture [the Lecture 4: Berry phase and Dirac monopole], going

around, e.g., K ′ point in the Brillouin zone an electron acquires the Berry phase

γ = π. (23)

It can be shown, from the argument of symmetry, that the Berry curvature is only finite at (k̃x, k̃y) = (0, 0), that is
exactly at the K and K ′ points and

Ω =

 0
0

πδ(k̃x, k̃y)

 . (24)
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