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We shall explore the similarity between the Lagrangian for a spin- 1
2

in a magnetic field and
that for a charged particle in a magnetic field encountered when we discussed the Aharonov-Bohm
phase. We shall then discover the Berry connection, the Berry curvature, and the Berry phase
from the former Lagrangian, which correspond to the vector potential, the magnetic field, and the
Aharonov-Bohm phase, respectively, appeared from the latter Lagragian. It turns out that the Berry
curvature describes the non-zero divergent field associated with a magnetic monopole, called the
Dirac monopole. We shall also see that the Berry phase appears when a quantum state undergoes
an adiabatic evolution with a time-dependent Hamiltonian.

I. BERRY CONNECTION, BERRY CURVATURE, AND BERRY PHASE

We found that the effective Lagrangian for the spin− 1
2 in the magnetic field B =

 0
0
B

 can be given by

L(ϕ, ϕ̇, θ, θ̇) = 1

2
γsB cos θ︸ ︷︷ ︸

potential energy

+
i

2
(1− cos θ) ϕ̇︸ ︷︷ ︸

velocity dependent part

, (1)

This reminds us of the imaginary-time version of the Lagrangian for the charged particle in the vector potential A,
that is,

L(x, ẋ) = 1

2
mẋ2︸ ︷︷ ︸

kinetic energy

− iqA · ẋ︸ ︷︷ ︸
velocity dependent part

, (2)

since both Lagrangians contain the velocity-dependent imaginary parts. Let us take this analogy seriously and find
the corresponding vector potential A for the former.
To this end let us remember that the Euler-Lagrange equation followed from the Lagrangian Eq. (1) is

ṅ = −γsn×B, (3)

where the normalized magnetic moment n = m
m0

= −2σ (m: magnetic moment; m0 = gµB

2 ) can be written in terms
of two Euler angles, θ and ϕ, as

n =

 sin θ cosϕ
sin θ sinϕ

cos θ

 . (4)

Thus, we can consider

σ̇ = −1

2
ṅ = −1

2

(
θ̇eθ + sin θϕ̇eϕ

)
= −1

2

 0

θ̇

sin θϕ̇

 , (5)

as the more proper velocity for the spin moving on a sphere with radius of 1
2 , where we use the spherical orthonormal

∗ usami@qc.rcast.u-tokyo.ac.jp

mailto:usami@qc.rcast.u-tokyo.ac.jp


2

system

er =

 sin θ cosϕ
sin θ sinϕ

cos θ

 (6)

eθ =

 cos θ cosϕ
cos θ sinϕ
− sin θ

 (7)

eϕ =

 − sinϕ
cosϕ
0

 . (8)

The velocity-dependent imaginary part of the Lagrangian L(ϕ, ϕ̇, θ, θ̇) in Eq. (1) can thus be rewritten in a very
similar way as the corresponding part of Eq. (2) as

LB(ϕ, ϕ̇, θ, θ̇) ≡
i

2
(1− cos θ) ϕ̇ = −iA↑ · σ̇, (9)

where we defined the vector-potential-like quantity A↑ as

A↑ =

 0
0

1−cos θ
sin θ

 (10)

in the spherical coordinates. This vector potential is called the Berry connection in the literature [1]. The subscript ↑
emphasizes the fact that the Berry connection stems from the state | ↑⟩, which we shall see more later on.
The Berry phase action can thus be written in three different ways:

Stop[ϕ, θ] = −
∫ β

0

dτ

〈
∂

∂τ
g

∣∣∣∣g〉 (11)

=
i

2

∫ β

0

dτ (1− cos θ) ϕ̇ (12)

= −i
∫ β

0

dτA↑ · σ̇. (13)

Now we shall find the another expression of the Berry connection A↑. First, notice that

∂

∂τ
⟨g|g⟩ =

〈
∂

∂τ
g

∣∣∣∣g〉+

〈
g

∣∣∣∣ ∂∂τ g
〉

= 0 (14)

and thus 〈
∂

∂τ
g

∣∣∣∣g〉 = −
〈
g

∣∣∣∣ ∂∂τ g
〉

(15)

and
〈
g
∣∣ ∂
∂τ g

〉
is pure imaginary. Equation. (11) can thus be rewritten as

Stop[ϕ, θ] =

∫ β

0

dτ

〈
g

∣∣∣∣ ∂∂τ g
〉
. (16)

Next, notice g(τ), a function of τ , can also be viewed as g(σ(τ)), a function of σ(τ), that is,

Stop[ϕ, θ] =

∫ β

0

dτ

〈
g(σ(τ))

∣∣∣∣ ∂

∂σ(τ)
g(σ(τ))

〉
σ̇(τ). (17)

Comparing this expression with Eq. (13) we find the more famous expression of the Berry connection:

A↑ = i

〈
g(σ)

∣∣∣∣ ∂∂σ
∣∣∣∣g(σ)〉 , (18)
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which, from Eq. (15), is a real-valued quantity.

Let us find some more. Since the integration with respect to τ in Eq.(13) running from τ = 0 to β is traded for the
contour integration with respect to σ, the Berry phase action can be further modified to

Stop[ϕ, θ] = −i
∮
C
A↑ · dσ

= −i
∫
A
(∇×A↑)︸ ︷︷ ︸

Ω↑

·dS, (19)

using Stokes theorem, where
∫
C
dσ is the contour integral with respect to σ along the circle C while

∫
A dS is the

surface integral over the area A bounded by the circle C. Here,

Ω↑ = ∇×A↑ (20)

is like magnetic field and is called the Berry curvature in the literature [1].

Like a charged particle moving in a ring, which is threaded by a magnetic field B, acquires the Aharonov-Bohm
phase, the magnetic moment moving on the sphere with the Berry curvature Ω↑ acquires the Berry phase γ↑, which
is defined by

γ↑ =

∮
C
dσ ·A↑ =

∫
A
dS ·Ω↑. (21)

We have thus the following correspondences:

vector potential : A ⇔ Berry connection : A↑
magnetic field : B = ∇×A ⇔ Berry curvature : Ω↑ = ∇×A↑
Aharonov − Bohm phase : γ ⇔ Berry phase : γ↑

.

II. DIRAC MONOPOLE

A. Dirac monopole [2]

Now let us explore the Berry connection A↑ and the Berry curvature Ω↑ a little bit more. According to the above
argument, the Berry curvature Ω↑ is like magnetic field. Then what kind of magnetic field? Taking rotation of A↑
given by Eq. (10) in the spherical coordinate system (r = 1

2 , θ, ϕ) we have

Ω↑ = ∇×A↑

=

(
er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ

)
× (Arer +Aθeθ +Aϕeϕ)

=


1

r sin θ

{
∂
∂θ (sin θAϕ)− ∂

∂ϕAθ

}
1
r

{
1

sin θ
∂
∂ϕAr − ∂

∂r (rAϕ)
}

1
r

{
∂
∂r (rAθ)− ∂

∂θAr

}
 (22)

=


1

1
2 sin θ

∂
∂θ (sin θAϕ)

− 1
1
2

∂
∂r

(
1
2Aϕ

)
0

 =

 2
0
0


= 2er, (23)

where we use ∇ in the spherical coordinate system (see Appendix A for the derivation),

∇ = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ
, (24)
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and the following relations:

ei · ej = δij (25)

ei × ej = ϵijkek (26)

∂

∂r

 er
eθ
eϕ

 =

 0
0
0

 (27)

∂

∂θ

 er
eθ
eϕ

 =

 eθ
−er
0

 (28)

∂

∂ϕ

 er
eθ
eϕ

 =

 sin θeϕ
cos θeϕ

− sin θer − cos θeθ

 . (29)

Notice that Eq. (23) suggests that the magnetic field is pointing radially, just like the magnetic monopole! This
monopole is called the Dirac monopole in some literature [3]. The strange point of the Dirac monopole is that
the divergence of the field Ω↑ is not zero. This means that the Berry connection A↑ should be ill-behaved since

∇ · (∇×A↑) ̸= 0. This is indeed true. Aϕ = 1−cos θ
sin θ = tan θ

2 is singular at θ = π as seen in Fig. 1.

-π -
π

2
0

π

2
π

-10

0

10

θ

A
ϕ

FIG. 1. ϕ-component of Berry connection A↑, Aϕ = 1−cos θ
sin θ

= tan θ
2
, as a function of θ.

We could partly remedy this situation by using the other Berry connection, for instance,

A↓ =

 0
0

− 1+cos θ
sin θ

 , (30)

which can be obtained by the following gauge transformation:

A↓ = A↑ −∇ϕ

= A↑ −
(
er

∂

∂r
+ eθ

1
1
2

∂

∂θ
+ eϕ

1
1
2 sin θ

∂

∂ϕ

)
ϕ

=

 0
0

1−cos θ
sin θ

−

 0
0
1

1
2 sin θ

 . (31)

Like vector potentials, the Berry connection is thus gauge-dependent. The gauge-transformed Berry connection A↓
in Eq. (30) does not have singularity at θ = π, but does have it at θ = 0 as seen in Fig. 2. Note that the Berry
connection A↓ produces exactly the same Berry curvature Ω↓ as Ω↑ in Eq. (23), thus, like magnetic field, the Berry
curvature is gauge-independent.

What about the Berry phase γ↑ in Eq. (21)? Does it change by the gauge transformation Eq. (31)? Let us see the
interesting answer to this question. Remember that σ in Eq. (21) traverses the circle C on the sphere of radius 1

2 . Let
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π
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FIG. 2. ϕ-component of Berry connection A↓, A
′
ϕ = − 1+cos θ

sin θ
= 1

tan θ
2

, as a function of θ.

us suppose the area A enclosed by C is AC,↑ when the area contains the north pole and AC,↓ when the area contains
the south pole. The Berry phase can then be given as

γ↑ =

∮
C
dl ·A↑ =

∫
AC,↑

dS · Ω↑︸︷︷︸
∇×A↑

=

∫
AC,↑

dS · 2er = 2AC,↑, (32)

where A↑ is well-defined within the area AC,↑. The same Berry phase can also be expressed in terms of A↓ as

γ↓ =

∮
C
dl ·A↓ =

∫
AC,↓

dS · Ω↓︸︷︷︸
∇×A↓

=

∫
AC,↓

dS · 2er = −2AC,↓, (33)

where A↓ is well-defined within the area AC,↓. Here, the minus sign comes from the fact that the area here has the
orientation with respect to the circle C.
Are these two expressions different? To see this, let us calculate the difference:

γ↑ − γ↓ = 2AC,↑ + 2AC,↓ = 2 4π

(
1

2

)2

︸ ︷︷ ︸
sphere surface of radius 1

2

= 2π. (34)

Thus the answer is no in a sense of modulo 2π! We thus say that γ↑ = γ↓ and the the Berry phase is gauge-independent!

B. Quntization of spin [2]

We can repeat the similar arguments for the general spin-S cases to reach the conclusion that the Berry phase
acquired by the spin-S moving on sphere of radius S is

γ↑ =
1

S
AC,↑ (35)

for the calcuration based on the area contains the north pole while

γ↓ = − 1

S
AC,↓ (36)

for that based on the area contains the south pole. The difference is thus given by

γ↑ − γ↓ =
1

S
AC,↑ +

1

S
AC,↓ =

1

S
4πS2︸ ︷︷ ︸

sphere surface of radiusS

= 4πS. (37)
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We can thus draw a very interesting conclusion that as far as the spin is quantized as 1
2 , 1,

3
2 , · · · , the Berry phase

can be single-valued (modulo 2π) and gauge-independent. It can also be seen that the minimum possible spin is not
1 but 1

2 !
This in turn means that the spin has to be quantized if we require that the Berry phase is single-valued (modulo

2π)! Here, we found a yet another item of correspondence, namely,

Flux quantization ⇔ Spin quantization .

III. BERRY PHASE AND ADIABATIC CHANGES OF A QUANTUM STATE [1–4]

So far we investigated the Berry phase with path integral method, which basically means that we treated the

inherently quantum-mechanical electron spin as the classical magnetic moment, n = m
m0

=

 sin θ cosϕ
sin θ sinϕ

cos θ

. Now, we

shall revisit the Berry phase by analyzing the adiabatic evolution of a quantum state | ↑ (t)⟩, which is the lowest
energy eigenstate of a time-dependent Hamiltonian H(t).

A. Adiabatic changes of a quantum state

Let the time-dependent Hamiltonian be

H(t) = −m ·B(t) = h̄γsσ ·B(t). (38)

Suppose that the magnetic field at t = 0 is B(0) = B(0)

 0
0
1

 and the spin starts at t = 0 in one of the eigenstates

| ↑ (0)⟩︸ ︷︷ ︸
for magnetic moment

= | ⇓ (0)⟩︸ ︷︷ ︸
for spin

=

[
0
1

]
(39)

with the energy ϵ↑(0) = ϵ⇓(0) = − 1
2 h̄γsB(0). When the time-variation of the Hamiltonian H(t) is adiabatic the spin

state remains in the instantaneous eigenstate of H(t), that is,

| ↑ (t)⟩ = | ⇓ (t)⟩ =

[
−e−i

ϕ(t)
2 sin θ(t)

2

ei
ϕ(t)
2 cos θ(t)

2

]
, (40)

with the energy ϵ↑(t) = ϵ⇓(t) = − 1
2 h̄γsB(t). Here, at t the magnetic field is assumed to be

B(t) = B(t)

 sin θ(t) sinϕ(t)
sin θ(t) cosϕ(t)

cos θ(t)

 . (41)

Now suppose that, at the end of the evolution t = T , the Hamiltonian returns to the original one, that is, H(T ) = H(0)
and thus the state must come back to the original state with some phase factor, that is,

| ↑ (T )⟩ = e−iΦ(T )| ↑ (0)⟩. (42)

We shall see that the phase can be written as [5]

Φ(T ) = Φ(0)︸︷︷︸
initial phase

+
1

h̄

∫ T

0

dtϵ↑(t)︸ ︷︷ ︸
dynamical phase

− γ↑︸︷︷︸
Berry phase

. (43)

Let us start by considering the time-dependent Schrödinger equation:

ih̄
∂

∂t
|ψ(t)⟩ = H(t)|ψ(t)⟩, (44)



7

where the wave function |ψ(t)⟩ can be assumed to be the instantaneous eigenstate | ↑ (t)⟩ with some phase factor,
that is,

|ψ(t)⟩ = e−iΦ(t)| ↑ (t)⟩ (45)

since |ψ(t)⟩ changes adiabatically from | ↑ (0)⟩ to | ↑ (T )⟩ in a course of time evolution. This adiabatic approximation
is essentially equivalent to performing a projection operation on the state |ψ(t)⟩ to restrict it to the eigenstates
| ↑ (t)⟩ [1]. Plugging this form of wave function into Eq. (44) and operate ⟨↑ (t)| from the left we have

h̄
∂Φ(t)

∂t
+ ih̄

〈
↑ (t)

∣∣∣∣ ∂∂t
∣∣∣∣↑ (t)

〉
= ϵ↑(t). (46)

By integrating both sides with respect to t from 0 to T we have

h̄ (Φ(T )− Φ(0)) + h̄

∫ T

0

dt i

〈
↑ (t)

∣∣∣∣ ∂∂t
∣∣∣∣↑ (t)

〉
=

∫ T

0

dtϵ↑(t), (47)

which indeed indicates Eq.(43) with the Berry phase [5]:

γ↑ =

∫ T

0

dt i

〈
↑ (t)

∣∣∣∣ ∂∂t
∣∣∣∣↑ (t)

〉
=

∫ T

0

dt

(
i

〈
↑ (σ(t))

∣∣∣∣ ∂

∂σ(t)

∣∣∣∣↑ (σ(t))

〉)
σ̇(t)

=

∮
C

dσ ·
(
i

〈
↑ (σ)

∣∣∣∣ ∂∂σ
∣∣∣∣↑ (σ)

〉)
︸ ︷︷ ︸

A↑: Berry connection

=

∫
A
dS · (∇×A↑)︸ ︷︷ ︸

Ω↑: Berry curvature

. (48)

This establishes the close link between the Berry phase and adiabatic evolution of the quantum state | ↑ (t)⟩. Note that
γ↑ does not depend on the velocity σ̇ in this setting and stems from the geometry of the space where the eigenstates
| ↑ (t)⟩ lives. Thus, the Berry phase is also called the geometric phase.

Appendix A: ∇ in the spherical coordinate system

In the spherical coordinate system, we have

x = r sin θ cosϕ (A1)

y = r sin θ cosϕ (A2)

z = r cos θ. (A3)

This leads to the following relationship between (dx, dy, dz) and (dr, dθ, dϕ):

 dx
dy
dz

 =


∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ


 dr
dθ
dϕ

 =

 sin θ cosϕ r cos θ cosϕ −r sin θ sinϕ
sin θ sinϕ r cos θ sinϕ r sin θ cosϕ

cos θ −r sin θ 0

 dr
dθ
dϕ

 . (A4)
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This, in turn, brings us to

∇ =


∂

∂x
∂

∂y
∂

∂z

 =


∂r

∂x

∂θ

∂x

∂ϕ

∂x
∂r

∂y

∂θ

∂y

∂ϕ

∂y
∂r

∂z

∂θ

∂z

∂ϕ

∂z




∂

∂r
∂

∂θ
∂

∂ϕ

 =


sin θ cosϕ

1

r
cos θ cosϕ −

1

r sin θ
sinϕ

sin θ sinϕ
1

r
cos θ sinϕ

1

r sin θ
cosϕ

cos θ −
1

r
sin θ 0




∂

∂r
∂

∂θ
∂

∂ϕ



=

 sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0




∂

∂r
1

r

∂

∂θ
1

r sin θ

∂

∂ϕ



= [er, eθ, eϕ]


∂

∂r
1

r

∂

∂θ
1

r sin θ

∂

∂ϕ


=

(
er

∂

∂r
+ eθ

1

r

∂

∂θ
+ eϕ

1

r sin θ

∂

∂ϕ

)
. (A5)
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