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In 1980, von Klitzing, Dorda, and Pepper reported [1] an experiment which measured the quan-
tized Hall resistance of the value RH = 6453.3 ± 0.1 Ω for a 2D electron gas under the strong
magnetic field. We shall explore this quantum Hall effect in the light of Berry phase.

I. THE DISCOVERY [1]

In 1980, von Klitzing, Dorda, and Pepper reported [1] that under the strong magnetic field the Hall resistance
shows a plateau at the value

RH = 6453.3± 0.1 Ω (1)

for measurements in which the Fermi level lies within the energy gap between the Landau quantization levels in a 2D
electron gas as shown in Fig. 1.

FIG. 1. Experimentally measured Hall resistance RH as a function of gate voltage Vg under the strong magnetic field [1]. When
the gate voltage was in a region corresponding to the energy gap between the lowest and the first excited Landau quantization
levels in a 2D electron gas, there is a plateau in RH. The plateau has a value of 6453.3± 0.1 Ω.

How can this precise quantized value of the Hall resistance be possible? We shall now explore this quantum Hall
effect in the light of Berry phase.
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II. MAGNETIC BLOCH BAND [2–4]

A. Bloch electron in a uniform magnetic field

Let us consider an electron in a 2D crystal laying xy-plane under the strong magnetic fieldB =

 0
0
B

 perpendicular

to the xy−plane. The Schrödinger equation for the electrons is written as

HB(r) |ψ(r)⟩ =
[

1

2m

(
{p+ eA(r)}2 + U(r)

)]
|ψ(r)⟩ = E |ψ(r)⟩ , (2)

where the position and momentum of the electron are confined in xy-plane within the uncertainty relation. We set

r =

 x
y
0

 and p = −ih̄∇ = −ih̄

 ∂
∂x
∂
∂y
∂
∂z

. We use the so-called symmetric gauge for the vector potential, which can

be written by

A(r) =
1

2

 yB
−xB
0

 , (3)

and found within xy−plane. The potential U(r) = U(x, y) is periodic in both x− and y−directions, that is,

U(x+ a, y) = U(x, y + b) = U(x, y), (4)

where a and b are the lattice constants along x− and y−directions, respectively.
We shall now ask: can we simply employ the Bloch states as the solutions of Eq. (2)?
No!
Although the perpendicular magnetic field B is uniform over the 2D crystal, the Hamiltonian is not invariant under

the spatial translations r → r+R, that is, x→ x+na and y → y+mb with R =

 na
mb
0

. In other words, the presence

of the magnetic field B induce the presence of the spatially-non-uniform vector potential A(r) in the Hamiltonian
HB(r) in Eq. (2), breaking the translational symmetry of the crystal. Namely,

HB(r +R) =

 1

2m


p+ eA(r +R)︸ ︷︷ ︸

A(r)+∆A


2

+ U(r)


 ̸= HB(r) =

[
1

2m

(
{p+ eA(r)}2 + U(r)

)]
. (5)

Here, ∆A is given by

∆A = A(r +R)−A(r) =
1

2

 nbB
−maB

0

 =
1

2

 ma
nb
0

×

 0
0
B

 =
1

2
(R×B) , (6)

and is evidently independent on r.

B. Magnetic translation operators

Let us try to find an alternative set of eigenstates. Note here that, since the lattice symmetry for the electron must
not be broken under the uniform magnetic field, we should have

HB(r +R) |ψ(r +R)⟩ = E |ψ(r +R)⟩ . (7)

We then just need to put an extra phase factor on the conventional Bloch states to remove ∆A in Eq. (6). In other
words, we just need to perform some gauge-transformation on the conventional Bloch states. To this end, let us
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introduce the magnetic translation operator TR given by

TR = exp

i p+ eA(r)

h̄︸ ︷︷ ︸
q

·R

 = exp [iq ·R] , (8)

where

q =
p+ eA(r)

h̄
(9)

is the magnetic crystal momentum. We have, for instance,

Ta |ψ(x, y)⟩ = e
i
h̄a(px+

e
2yB) |ψ(x, y)⟩ = e

i
h̄ (

1
2 eBay) |ψ(x+ a, y)⟩ (10)

Tb |ψ(x, y)⟩ = e
i
h̄ b(px−

e
2xB) |ψ(x, y)⟩ = e−

i
h̄ (

1
2 eBbx) |ψ(x, y + b)⟩ . (11)

With this TR, we find

HB(r)
(
TR |ψ(r)⟩

)
= exp

[
i

h̄
e∆A

]
HB(r +R) |ψ(r +R)⟩︸ ︷︷ ︸

E|ψ(r+R)⟩
= E

(
TR |ψ(r)⟩

)
. (12)

This leads to [
HB(r), TR

]
= 0. (13)

We thus should be able to find the simultaneous eigenstates of HB(r) and TR.

C. Magnetic Bloch states, magnetic unit cell, and magnetic Brillouin zone

The conventional translation operators defined by

T 0
R = exp

i p

h̄︸︷︷︸
k

·R

 = exp [ik ·R] (14)

are commutative. The simultaneous eigenstates of the system Hamiltonian and T 0
R constitute the Bloch states. On

the other hand, the magnetic translation operators TR along the different directions normally do not commute. For
Ta and Tb defined by Eqs. (10) and (11), respectively, for instance, we have

TbTa = exp

i e

h̄︸︷︷︸
Φ−1

0

abB︸︷︷︸
Φ

TaTb = exp

[
i
Φ

Φ0

]
TaTb. (15)

This can be obtained by using the following formulas for operators Â and B̂:

eÂeB̂ = e−
1
2 [Â,B̂]eÂ+B̂ , (16)

and

eB̂eÂ = e
1
2 [Â,B̂]eÂ+B̂ , (17)
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which holds when the commutator
[
Â, B̂

]
commutes with Â and B̂. Here, in our example,

Â =
i

h̄

(
px +

e

2
yB

)
=
i

h̄

(
−ih̄ ∂

∂x
+
e

2
yB

)
(18)

B̂ =
i

h̄

(
py −

e

2
xB

)
=
i

h̄

(
−ih̄ ∂

∂y
− e

2
xB

)
, (19)

and [
Â, B̂

]
= i

e

h̄︸︷︷︸
Φ−1

0

abB︸︷︷︸
Φ

. (20)

Here Φ = abB is the magnetic flux penetrating through the unit cell and Φ0 = h̄
e is flux quantum. The extra phase

in Eq. (15) that leads to the non-commutativity of Ta and Tb is associated with the Aharonov-Bohm phase acquired
by the electron traversing the edge of the unit cell.

Now let us assume that Φ
Φ0

= p
q , where p and q are coprime integers. Then, Tqa and Tb become commutative. The

simultaneous eigenstates of HB(r), Tqa, and Tb constitute the eigenstates of the Schrödinger equation (2) for the n-th
magnetic Bloch band. These states ∣∣ψn,q(r)〉 = eiq·r ∣∣un,q〉 (21)

are called the magnetic Bloch states. The resultant magnetic unit cell is q-times bigger in x−direction while the
magnetic Brillouin zone is folded q-times.

III. LAUGHLIN’S THOUGHT EXPERIMENT [3, 5, 6]

Let us now consider the response of these 2D magnetic Bloch electrons when applying a bias voltage along
x−direction: the situation in which the quantum Hall effect introduced in Sec. I was observed. The applied uni-

form electric field E =

 E
0
0

 leads to the linearly changing electrostatic potential ∆U(x, y) = Ex, which again(!)

breaks the translational symmetry of the crystal. To exploit the magnetic Bloch states,
∣∣ψn,q(r)〉, in Eq. (21), let us

perform Laughlin’s ingenious device modification into a ring [5] as shown in Fig. 2. He considered the electric field
E appeared through the electromotive force generated by the time-dependent flux penetrating the ring. The electric
field E can then be given by the uniform but time-dependent vector potential A(t), namely,

E = −Ȧ(t). (22)

Then, under the electric field, the original Hamiltonian HB(r) in Eq. (2) is modified into

HL(r, t) =
1

2m
(p+ e {A(r) +A(t)})2 + U(r). (23)

The instantaneous eigenstates for HL(r, t) can also be given by the magnetic Bloch form

|ψn,q̃(r)⟩ = eiq̃·r|un,q̃(r)⟩, (24)

which is the same as the form given by Eq. (21) but q is replaced by

q̃ = q +
e

h̄
A(t). (25)

Since A(t) preserves the magnetic translational symmetry (i.e.,
[
A(t), TR

]
= 0) in any time, the magnetic crystal

momentum q remains to be a good quantum number and satisfy

q̇ = 0 (26)

all the time. From Eq. (22) we thus have

˙̃q =
e

h̄
Ȧ(t) = − e

h̄
E. (27)
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FIG. 2. Laughlin’s modified sample geometry [5]. The ring constitutes the Hall bar, where the current I is applying along the
ring while the Hall voltage ∆V is measured across the ring’s edges under the out-of-plane magnetic field µ0H0 = B. The length
of the ring is L. The current I is delivered through the electromotive force generated by the time-dependent flux penetrating
the ring. The Hall resistance is RH = ∆V

I
.

Now, we are in a position to observe the response of the system shown in Fig. 2 upon an adiabatic variation of the
magnetic flux penetrating the ring. By following the argument we used in discussing the adiabatic charge pumping,
that is, Thouless pumping [7], let us calculate the Berry-curvature induced adiabatic current.
The first order correction to the adiabatic velocity vn,q̃(t) of the n-th magnetic Bloch band is given by the following

Kubo formula:

vn,q̃(t) = −i
∑
n′ ̸=n

1

ϵn,q̃ − ϵn′,q̃

(〈
un,q̃

∣∣∣∣∂HL

∂q̃

∣∣∣∣un′,q̃

〉〈
un′,q̃

∣∣∣∣∂un,q̃∂t

〉
−

〈
∂un,q̃

∂t

∣∣∣∣un′,q̃

〉〈
un′,q̃

∣∣∣∣∂HL

∂q̃

∣∣∣∣un,q̃〉)

= −i
∑
n′ ̸=n

(〈
∂un,q̃

∂q̃

∣∣∣∣un′,q̃

〉〈
un′,q̃

∣∣∣∣∂un,q̃∂t

〉
−
〈
∂un,q̃

∂t

∣∣∣∣un′,q̃

〉〈
un′,q̃

∣∣∣∣∂un,q̃∂q̃

〉)
. (28)

Here, the eigen-energy ϵn,q̃ is given by

⟨un,q̃ |e−iq̃·rHLe
iq̃·r|un,q̃⟩ = ⟨un,q̃ |ϵn,q̃ |un,q̃⟩. (29)

For deriving the quantized Hall resistance, we now use the relation

∂

∂t
= ˙̃q · ∂

∂q̃
= − e

h̄
E · ∂

∂q̃
, (30)

which is obtained from Eq. (27). We then have

vn,q̃(t) = −i
∑
n′ ̸=n


〈
∂un,q̃

∂q̃

∣∣∣∣un′,q̃

〉

− e

h̄
E︸︷︷︸
E
0
0


·
〈
un′,q̃

∣∣∣∣∂un,q̃∂q̃

〉


−


− e

h̄
E︸︷︷︸
E
0
0


·
〈
∂un,q̃

∂q̃

∣∣∣∣un′,q̃

〉


〈
un′,q̃

∣∣∣∣∂un,q̃∂q̃

〉


= −i
∑
n′ ̸=n



〈
∂u

n,q̃
∂q̃x

∣∣∣∣un′,q̃

〉
〈
∂u

n,q̃
∂q̃y

∣∣∣∣un′,q̃

〉
0


(
− e

h̄
E

〈
un′,q̃

∣∣∣∣∂un,q̃∂q̃x

〉)
−

(
− e

h̄
E ·

〈
∂un,q̃

∂q̃x

∣∣∣∣un′,q̃

〉)
〈
un′,q̃

∣∣∣∣∂un,q̃
∂q̃x

〉
〈
un′,q̃

∣∣∣∣∂un,q̃
∂q̃y

〉
0




= i
e

h̄
E


0〈

∂u
n,q̃
∂q̃y

∣∣∣∣∂un,q̃
∂q̃x

〉
−
〈
∂u

n,q̃
∂q̃x

∣∣∣∣∂un,q̃
∂q̃y

〉
0

 (31)
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IV. QUANTUM HALL EFFECT [4, 8]

A. Anomalous velocity

In an alternative mock-up expression, Eq. (31) can be written as

vn,q̃(t) =
e

h̄

(
E ×Ωn,q̃

)
, (32)

where

Ωn,q̃ =


0
0

i

(〈
∂u

n,q̃
∂q̃x

∣∣∣∣∂un,q̃
∂q̃y

〉
−
〈
∂u

n,q̃
∂q̃y

∣∣∣∣∂un,q̃
∂q̃x

〉)
 (33)

is nothing but the Berry curvature.

Putting the zero-order term,
∂ϵ

n,q̃
h̄∂q̃ , together, the adiabatic velocity of the electron in the n-th magnetic Bloch band

with the magnetic crystal momentum q̃ can be given by

vtot
n,q̃ = ṙn,q̃ =

∂ϵn,q̃

h̄∂q̃
+

{
− e

h̄

(
E × Ω

n,k

)}
︸ ︷︷ ︸

v
n,k

=
∂ϵn,q̃

h̄∂q̃
+ ˙̃q × Ω

n,k. (34)

The first order correction v
n,k is indeed transverse to the electric field E and is called anomalous velocity, produces

the dissipationless current, and is responsible for the quantum Hall effect as we shall see in the following.

B. Quantum Hall effect

The Hall current density jH perpendicular to E, which results from the second term in the velocity Eq. (34), can
be expressed as

jH = −e
∑
n

∫
MBZ

dq̃

(2π)
2 vn,q̃ (35)

= E
e2

h̄

∑
n

∫
MBZ

dq̃

(2π)
2Ωn,q̃︸ ︷︷ ︸

σxy

(36)

where the integration is over the magnetic Brillouin zone (MBZ) [3, 4, 8]. Since
∑
n

∫
MBZ

dq̃
2πΩn,q̃ can have some

integer value Z [3, 4, 8] (this follows from the similar argument employed when discussing Thouless pumping [7]), the
Hall conductivity σxy in Eq. (36) can be written by the simple form

σxy =
e2

h
Z, (37)

and seen to be quantized in units of e
2

h ! In our current setting, the Hall resistance can be expressed as

RH =
EL

jHL
=

1

σxy
, (38)

where L is the length of the ring used in our thought experiment. Thus, we arrive at the conclusion that the observed
Hall resistance indicated in Eq. (1) can be interpreted as the result of this quantized Hall conductivity with Z = 4!
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